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Abstract 

Background:  Radiomics analysis is a newly emerging quantitative image analysis technique. The aim of this study 
was to extract a radiomics signature from the computed tomography (CT) imaging to determine the infarction onset 
time in patients with acute middle cerebral artery occlusion (MCAO).

Methods:  A total of 123 patients with acute MCAO in the M1 segment (85 patients in the development cohort and 
38 patients in the validation cohort) were enrolled in the present study. Clinicoradiological profiles, including head CT 
without contrast enhancement and computed tomographic angiography (CTA), were collected. The time from stroke 
onset (TFS) was classified into two subcategories: ≤ 4.5 h, and > 4.5 h. The middle cerebral artery (MCA) territory on 
CT images was segmented to extract and score the radiomics features associated with the TFS. In addition, the clini-
coradiological factors related to the TFS were identified. Subsequently, a combined model of the radiomics signature 
and clinicoradiological factors was constructed to distinguish the TFS ≤ 4.5 h. Finally, we evaluated the overall perfor-
mance of our constructed model in an external validation sample of ischemic stroke patients with acute MCAO in the 
M1 segment.

Results:  The area under the curve (AUC) of the radiomics signature for discriminating the TFS in the development 
and validation cohorts was 0.770 (95% confidence interval (CI): 0.665–0.875) and 0.792 (95% CI: 0.633–0.950), respec-
tively. The AUC of the combined model comprised of the radiomics signature, age and ASPECTS on CT in the devel-
opment and validation cohorts was 0.808 (95% CI: 0.701–0.916) and 0.833 (95% CI: 0.702–0.965), respectively. In the 
external validation cohort, the AUC of the radiomics signature was 0.755 (95% CI: 0.614–0.897), and the AUC of the 
combined model was 0.820 (95% CI: 0.712–0.928).

Conclusions:  The CT-based radiomics signature is a valuable tool for discriminating the TFS in patients with acute 
MCAO in the M1 segment, which may guide the use of thrombolysis therapy in patients with indeterminate stroke 
onset time.
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Introduction
Stroke represents as a common cause of death and dis-
ability worldwide [1]. Reperfusion therapies for acute 
ischemic stroke mainly include the use of systemic 

Open Access

*Correspondence:  cjr.gxy@hotmail.com
1 Department of Radiology, Zhejiang Provincial People’s Hospital, 
Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, 
Zhejiang, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12880-021-00678-1&domain=pdf


Page 2 of 11Wen et al. BMC Med Imaging          (2021) 21:147 

intravenous thrombolytics and mechanical thrombec-
tomy using different stent retrievers or thromboaspira-
tion devices [2]. The treatment with intravenous tissue 
plasminogen activator (tPA) remains the fastest and easi-
est way to initiate acute stroke reperfusion treatment, 
and should continue to be the first-line treatment for 
patients with acute ischemic stroke within 4.5  h from 
onset [2]. However, due to the narrow treatment time 
window, approximately 30% of patients do not undergo 
intravenous thrombolysis, since the stroke onset time 
is indeterminate, although the stroke may actually have 
occurred within the time window [3–5].

Ischemic stroke can be visible on the magnetic reso-
nance imaging (MRI) even within 3 min after the onset 
of symptoms [6], and diffusion-weighted imaging (DWI) 
is the gold standard for evaluating the extent of ischemic 
stroke [7]. However, MRI has limited availability, and 
cannot be promptly used in many emergent cases. Com-
puted tomography (CT) is less time-consuming than 
MRI. Nevertheless, the CT density changes in ischemic 
tissue are usually subtle, especially at the hyperacute 
stage. Therefore, the precise identification of infarction 
on CT images remains challenging [8, 9]. Hence, it is nec-
essary to develop a new approach that can identify the 
subtle changes in ischemic lesions, which may facilitate 
the discrimination of the time from stroke onset (TFS).

Radiomics analysis has shown promise in a variety of 
pathologies, including cerebrovascular disease, glioma, 
lung cancer, hepatocellular carcinoma, and prostate can-
cer, in different imaging modalities [10, 11]. It is much 
more quantitative when compared with traditional 
methods, and is able to detect features that radiologists 
cannot recognize, such as the randomness of image 
intensity (entropy) or uniformity. In addition, radiom-
ics can provide more information about the shape, size 
or volume, intensity, and texture of the lesion [10]. To 
date, the values of the radiomics signature for discrimi-
nating the TFS in acute middle cerebral artery (MCA) 
occlusion (MCAO) patients in the M1 segment have not 
been clearly outlined. In this study, the TFS was classi-
fied into two subcategories: ≤ 4.5 h, and > 4.5 h. The pre-
sent study aims to extract a radiomics signature from CT 
images, and construct a combined model of the radiom-
ics signature and clinicoradiological characteristics for 
discriminating the TFS after acute MCAO. Furthermore, 
the values of the radiomics signature and the combined 
model for discriminating the TFS were analyzed.

Materials and methods
Subjects
A total of 165 patients from Zhejiang Provincial Peo-
ple’s Hospital were retrieved between January 2017 and 
January 2021. The inclusion criteria were, as follows: 

(1) patients who presented with symptoms and/or signs 
related to ischemic stroke and with a record of stroke 
onset time; (2) cranial CT and CTA within 24  h after 
symptom onset were available; (3) a diagnosis of MCAO 
in the M1 segment, and ischemic infarction in the terri-
tory of the MCA was confirmed by neuroimaging. The 
exclusion criteria were, as follows: (1) a modified Rankin 
Scale (mRS) score of > 2 before admission; (2) the simul-
taneous presence of postoperative changes, space-occu-
pying lesions, or old lesions with a diameter of > 1.5 cm in 
the ipsilateral hemisphere; (3) the neuroimaging revealed 
simultaneous ischemic infarction in areas supplied by the 
anterior cerebral artery or posterior circulation; (4) diffi-
culty in imaging interpretation due to artifacts or incom-
plete images. Eventually, 123 patients were included in 
the present study (Fig. 1). These patients were randomly 
classified into two cohorts at a ratio of 7:3 [12]: develop-
ment cohort (n = 85) and validation cohort (n = 38). Also, 
sixty eligible patients from another hospital (Tongde 
Hospital of Zhejiang Province) were included in our 
study for the external validation.

Collection and analyses of imaging data
Two experienced neuroradiologists (raters A and B with 
10- and 15-year experience in neuroradiology, respec-
tively) reviewed and evaluated the radiological imag-
ing, including the admission CT and CTA, as well as the 
follow-up images. Discordant interpretations between 
observers were resolved by consensus. The CT and CTA 
images were collected using a 640-slice CT (Toshiba, 
Aquilion ONE TSX-301  A). CT images were obtained 
with a slice thickness of 1 mm, an intersection gap of 
1 mm, and a matrix of 512 × 512. CTA images were 
obtained with a slice thickness of 0.5 mm, an intersection 
gap of 0.5 mm, and a matrix of 512 × 512. The axial, sag-
ittal and coronal CTA images were reconstructed with a 
slice thickness of 3 mm and an intersection gap of 2 mm.

Alberta Stroke Program Early CT Score (ASPECTS) 
regions (caudate nucleus, internal capsule, lentiform 
nucleus, insula, and 6 regions in the vascular territory of 
the MCA (M1–M6)) were segmented on non-contrast 
enhanced, reconstructed cranial CT images with 5-mm 
slice thickness according to a previous study [13]. Each 
ASPECTS area was scored 0 if abnormal and 1 if normal. 
Finally, these sub-scores were added to calculate the final 
ASPECTS for each patient (range 0 to 10).

The leptomeningeal collaterals’ status was evaluated 
on CTA images. Collaterals were graded according to a 
previous scoring system [14, 15], as follows: Grade 0, 
no collateral filling in the territory of the affected MCA; 
Grade I, collateral filling of 1–50% in the territory of the 
affected MCA; Grade II, collateral filling of 51–99% in the 
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territory of the affected MCA; Grade III, 100% collateral 
filling in the territory of the affected MCA.

According to the CT and CTA images on admission, 
ASPECTS, hyperdense vessel sign (HVS) of MCA, occlu-
sion of the intracranial internal carotid artery (ICA), and 
collaterals were analyzed.

Radiomics features
The radiomics analysis was performed based on the 
admission cranial CT, as follows (Fig. 2):

[Pre-processing] The pre-processing of the image data 
was performed using the Artificial Intelligence Kit (Ver-
sion 3.0.0.R, GE Healthcare), including image interpola-
tion, gray level discretization and intensity normalization.

[Region-of-interest (ROI) segmentation] Two raters 
(A and B) trained in neuroimaging reviewed cranial CT 
images of included patients. Subsequently, they anno-
tated images from non-contrast enhanced cranial CT 
images by drawing polygonal ROI of the MCA territory 
on each slice, generating a volume of interest (VOI), 
using a dedicated software (ITK-SNAP software (www.​
itksn​ap.​org)) according to the method of Cuocolo et  al. 
[16]. The inter- and intra-rater agreements on the ROI 

segmentation were evaluated by intra-class correlation 
coefficients (ICCs). The inter-rater ICCs were calculated 
by comparing the feature extractions from raters A and 
B in 30 randomly selected patients. The intra-rater ICCs 
were calculated by comparing two measurements of rater 
A.

[Feature extraction and selection] The extracted 
features included histogram, formfactor, haralick, run-
length matrix (RLM), gray level co-occurrence matrix 
(GLCM), and gray level size-zone matrix (GLSZM). A 
total of 396 features were extracted from each subject. 
These features were standardized for removing the unit 
limits of the data. Dimension reduction was performed 
using analysis of variance, Mann-Whitney U-test, and 
correlation test. The least absolute shrinkage and selec-
tion operator (LASSO) was used for further feature 
selection.

Construction and validation of the radiomics 
signature
The radiomics signature was constructed using the mul-
tivariate logistic regression analysis, and this was used to 
discriminate the TFS based on the selected features after 

Fig. 1  Flowchart for the subject enrollment

http://www.itksnap.org
http://www.itksnap.org
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the LASSO. Then, the radiomics score (rad-score) was 
calculated for each subject. The calculation formula was 
derived from the data in the development cohort, which 
was used to calculate the rad-score for each subject in 
the validation cohort. The discriminative efficiency of 
the radiomics signature was evaluated using the receiver-
operator characteristic (ROC) curve (AUC) in both the 
development and validation cohorts. The clinical effi-
ciency of the radiomics signature for discriminating the 
TFS was evaluated by decision curve analysis (DCA) 
based on the threshold probabilities.

Construction and validation of the combined 
model
All variables, including demographic characteristics, 
neurological functions (National Institutes of Health 
Stroke Scale (NIHSS) scores), risk factors (hyperten-
sion, diabetes, hyperlipidemia, etc.), and neuroimaging 
features (HVS, ASPECTS, collateral formation, etc.), 
were screened for the potential association with the TFS. 
Then, multivariate logistic regression analysis was used 
to generate the combined model for discriminating the 
TFS. The performance of the model was evaluated using 
ROC curve analyses. The efficiency of the model for dis-
criminating the TFS was evaluated using DCA.

Statistical analysis
SPSS 21.0 software, MedCalc 15.2.2 software, and R soft-
ware (version 3.3.1) were used for the statistical analyses. 
The LASSO analysis was performed based on the mini-
mum criterion by 10-fold cross validation. Mann-Whit-
ney U-test, Student t-test, and Chi-square test were used 
to identify the potential variables associated with the 

TFS. Multivariate logistic regression analysis was used to 
establish the model for discriminating the TFS. The radi-
omics signature and combined model for discriminating 
the TFS were compared using the McNemar test. Also, 
comparison of the two ROC curves was performed using 
the method suggested by DeLong et  al. [17]. Spearman 
correlation analysis was used to evaluate the correlations 
between the radiomics features and clinicoradiological 
factors associated with the TFS. A P value < 0.05 was con-
sidered to be statistically significant.

Results
Inter‑ and intra‑rater reliability
The inter-rater agreements on the ROI segmentation 
between two raters ranged within 0.781–0.905.

The intra-rater agreements on the ROI segmenta-
tion between two measurements from one rater ranged 
within 0.797–0.928.

Clinicoradiological characteristics
Except for the diabetes mellitus, there was no statisti-
cal difference in clinical and radiological characteristics 
between the development cohort and validation cohort 
(Table 1). There were significant statistical differences in 
variables (rad-score, age and ASPECTS on CT) between 
patients with TFS ≤ 4.5  h and patients with TFS > 4.5  h 
(Table 2).

Development of the radiomics signature
Initially, a total of 218 features were identified by the 
analysis of variance and Mann-Whitney U test. Then, 
eight features were retained by the Spearman correla-
tion analysis. The LASSO was used to further reduce 

Fig. 2  Workflow for the radiomics analysis
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the dimension (Fig.  3). Finally, the six most valuable 
features remained: LongRunEmphasis_angle135_off-
set4, SurfaceArea, Inertia_AllDirection_offset7_SD, 
ClusterShade_AllDirection_offset1_SD, Percentile20, 
and LongRunLowGreyLevelEmphasis_angle90_offset7. 

Subsequently, the rad-score was calculated using the 
LASSO model, with a linear combination of these six 
features. For each subject, the values of these six features 
were placed into the rad-score calculation formula, and 
the rad-score was generated to reflect the efficiency for 
discriminating the TFS.

The AUC, sensitivity and specificity of the radiom-
ics signature for discriminating the TFS was 0.770 (95% 
CI: 0.665–0.875), 87.50% and 58.49%, respectively, in the 
development cohort (Fig.  4). The Hosmer–Lemeshow 
test revealed no overfitting (P = 0.228). The AUC, sensi-
tivity and specificity in the validation cohort was 0.792 
(95% CI: 0.633–0.950), 64.29% and 91.67%, respectively 
(Fig. 4). The DCA revealed that the radiomics signature 
has a high power for discriminating the TFS, with thresh-
old probabilities within 0.26–1.00 in the development 
cohort and threshold probabilities within 0.10–0.55 in 
the validation cohort (Fig. 5).

Development of the combined model
The combined model for discriminating the TFS included 
the following variables: the rad-score, age, and ASPECTS 
on CT (Table 2).

The AUC, sensitivity and specificity of the combined 
model based on the rad-score, age and ASPECTS was 
0.808 (95% CI: 0.701–0.916), 75.00% and 81.13%, respec-
tively, in the development cohort (Fig.  4). The Hos-
mer–Lemeshow test revealed no overfitting (P = 0.124). 
The AUC, sensitivity and specificity in the validation 
cohort was 0.833 (95% CI: 0.702–0.965), 78.57% and 
83.33%, respectively (Fig. 4). The DCA revealed that the 

Table 1  Characteristics of the development and validation 
cohorts

SD standard deviation, NIHSS National Institutes of Health Stroke Scale, 
IQR interquartile range, CT computed tomography, ASPECTS Alberta Stroke 
Program Early CT Score, HVS hyperdense vessel sign, MCA middle cerebral artery, 
ICA internal carotid artery

Variable Development 
cohort (n = 85)

Validation 
cohort 
(n = 38)

P-value

Male gender, n (%) 51 (60.00%) 27 (71.05%) 0.312

Age (years), mean ± SD 72.12 ± 12.96 71.76 ± 13.07 0.889

Baseline NIHSS, median (IQR) 18 (14.50–23) 20 (13.75–27) 0.438

Hypertension, n (%) 56 (65.88%) 25 (65.79%) 0.992

Diabetes mellitus, n (%) 20 (23.53%) 3 (7.89%) 0.046

Hyperlipidemia, n (%) 15 (17.65%) 12 (31.58%) 0.101

Atrial fibrillation, n (%) 40 (47.06%) 21 (55.26%) 0.439

Smoking, n (%) 27 (31.76%) 15 (39.47%) 0.418

Alcohol abuse, n (%) 16 (18.82%) 10 (26.32%) 0.350

ASPECTS on CT, median 
(IQR)

7 (5–9.50) 7 (3–9) 0.520

HVS of MCA, n (%) 43 (50.59%) 24 (63.16%) 0.241

Collateral score, median (IQR) 1 (1–1) 1 (1–1) 0.297

Right-side MCA occlusion in 
the M1 segment, n (%)

41 (48.24%) 23 (60.53%) 0.244

ICA occlusion, n (%) 33 (38.82%) 18 (47.37%) 0.430

Table 2  Characteristics for patients classified according to the time from stroke onset (TFS)

SD standard deviation, NIHSS National Institutes of Health Stroke Scale, IQR interquartile range, CT computed tomography, ASPECTS Alberta Stroke Program Early CT 
Score, HVS hyperdense vessel sign, MCA middle cerebral artery, ICA internal carotid artery

Variable TFS ≤ 4.5 h (n = 46) TFS > 4.5 h (n = 77) P-value

Male gender, n (%) 31 (67.39%) 47 (61.04%) 0.563

Age (years), mean ± SD 75.17 ± 12.39 70.12 ± 12.97 0.035

Baseline NIHSS, median (IQR) 19.50 (16–22.25) 19 (13–25) 0.364

Hypertension, n (%) 31 (67.39%) 50 (64.94%) 0.846

Diabetes mellitus, n (%) 9 (19.57%) 14 (18.18%) 0.850

Hyperlipidemia, n (%) 12 (26.09%) 15 (19.48%) 0.394

Atrial fibrillation, n (%) 25 (54.35%) 36 (46.75%) 0.459

Smoking, n (%) 15 (32.61%) 27 (35.06%) 0.846

Alcohol abuse, n (%) 10 (21.74%) 16 (20.78%) 0.900

ASPECTS on CT, median (IQR) 8 (5.25–9) 6 (3–9) 0.038

HVS of MCA, n (%) 28 (60.87%) 39 (50.65%) 0.350

Collateral score, median (IQR) 1 (1–1) 1 (1–1) 0.409

Right-side MCA occlusion in the M1 segment, n (%) 19 (41.30%) 45 (58.44%) 0.093

ICA occlusion, n (%) 19 (41.30%) 32 (41.56%) 0.978

Rad score, mean ± SD 0.54 ± 2.39 − 0.97 ± 1.35 < 0.001
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combined model has a high power for discriminating the 
TFS, with threshold probabilities within 0.19–1.00 in the 
development cohort and threshold probabilities within 
0.10–0.63 in the validation cohort (Fig. 6).

However, there was no statistical difference between 
the radiomics signature and combined model for dis-
criminating the TFS (P = 0.2295). Also, in terms of the 
results of ROC curves, there was no statistical difference 

Fig. 3  Heatmap showing the correlation between variables identified using the LASSO in the development and validation cohorts

Fig. 4  A The receiver operating characteristic curve for the radiomics signature (AUC, 0.770 [0.665–0.875]) and the combined model (AUC, 0.808 
[0.701–0.916]) for discriminating the time from stroke onset (TFS) in the development cohort. B The receiver operating characteristic curve for the 
radiomics signature (AUC, 0.792 [0.633–0.950]) and the combined model (AUC, 0.833 [0.702–0.965]) for discriminating the TFS in the validation 
cohort
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between the AUC of the radiomics signature and that of 
the combined model (P = 0.5166).

The correlations between radiomics features 
and clinicoradiological characteristics
SurfaceArea and Percentile20 were negatively correlated 
with age (r = − 0.218, P = 0.015; r = −  0.213, P = 0.018; 
Fig.  7). Inertia_AllDirection_offset7_SD and LongRun-
LowGreyLevelEmphasis_angle90_offset7 were posi-
tively correlated with age (r = 0.320, P < 0.001; r = 0.265, 
P = 0.003; Fig.  7). LongRunEmphasis_angle135_offset4, 

Inertia_AllDirection_offset7_SD, ClusterShade_All-
Direction_offset1_SD and Percentile20 were positively 
correlated with ASPECTS on CT (r = 0.206, P = 0.022; 
r = 0.222, P = 0.013; r = 0.323, P < 0.001; r = 0.441, 
P < 0.001; Fig. 7).

External validation of the radiomics signature 
and combined model
The AUC, sensitivity and specificity of the radiomics 
signature for discriminating the TFS was 0.755 (95% 
CI: 0.614–0.897), 44.44% and 95.24%, respectively, in 

Fig. 5  The decision curve analysis demonstrating that the radiomics signature is a valuable approach for discriminating the TFS, with a threshold 
probability range of 0.26–1.00 in the development cohort (A) and 0.10–0.55 in the validation cohort (B)

Fig. 6  The decision curve analysis of the combined model involving the rad-score, age and ASPECTS on CT. The combined model had a better 
performance, with a threshold probability range of 0.19–1.00 in the development cohort (A) and 0.10–0.63 in the validation cohort (B)
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the external validation cohort (Fig. 8). The AUC, sen-
sitivity and specificity of the combined model for dis-
criminating the TFS was 0.820 (95% CI: 0.712–0.928), 
72.22% and 83.33%, respectively, in the external vali-
dation cohort (Fig.  8). The Hosmer–Lemeshow test 
revealed no overfitting of the radiomics signature 
and combined model (P = 0.827; P = 0.541). The DCA 
revealed that the radiomics signature has a high power 
for discriminating the TFS, with threshold probabili-
ties within 0.20–0.86 in the external validation cohort, 
and the combined model has a high power for discrim-
inating the TFS, with threshold probabilities within 
0.06–0.57 in the external validation cohort (Fig. 8).

Discussion
The accurate evaluation of the TFS is pivotal for improv-
ing the clinical prognosis of ischemic stroke. Therefore, 
it is necessary to identify the TFS-related factors at the 
early stage of stroke. KERR and MARTHA [18] con-
ducted a study that involved 336 consecutive patients 
with known ischemic stroke onset time, in which DWI 
and fluid-attenuated inversion recovery (FLAIR) imag-
ing were performed in the emergency department. They 
found that the probability of stroke onset to scanning 
time within three hours was 66% when the FLAIR find-
ings were negative (with or without DWI-positivity), and 
the FLAIR images revealed no abnormalities within six 
hours after stroke onset in 93% cases. In addition, MRI is 
not always available for stroke cases, while CT scanning 
is more commonly used in the emergency department. 

Fig. 7  The correlation plots between radiomics features and clinicoradiological factors related to the TFS

Fig. 8  The receiver operating characteristic curve of the radiomics signature (AUC, 0.755 [0.614–0.897]) and combined model (AUC, 0.820 
[0.712–0.928]) for discriminating the TFS in the external validation cohort (A). The radiomics signature had a a better performance with a threshold 
probability range of 0.20–0.86 in the external validation cohort (B). The combined model had a better performance with a threshold probability 
range of 0.06–0.57 in the external validation cohort (C)



Page 9 of 11Wen et al. BMC Med Imaging          (2021) 21:147 	

However, it is usually difficult to identify ischemic stroke 
lesions in the early stage on CT, although CT is conveni-
ent and has a high sensitivity for detecting intracerebral 
hemorrhage, which is a contraindication to thrombolytic 
therapy [19]. Also in the case of minor bleeding, MR T2* 
or gradient echo sequence may not be sufficient to distin-
guish acute bleeding from chronic bleeding (e.g. micro-
bleeds), and for this, CT should be performed [19].

Radiomics analysis is a newly emerging quantitative 
image analysis technique. By extrapolating quantitative 
information from conventional images, it can identify 
imaging biomarkers that have important contributions 
to the characteristics of diseases. This method has the 
potential to overcome the limitations of qualitative image 
interpretation, which is helpful for the diagnosis, progno-
sis and treatment decisions [20]. Radiomics analysis has 
provided an alternative way for the identification [21, 22] 
and evaluation of cerebral infarction in recent years [11, 
13, 23]. However, few studies have focused on the radi-
omics for discriminating the onset time of stroke. Yao 
et  al. [24] constructed a CT-based radiomics signature 
for determining the onset time of symptoms in patients 
with basal ganglia infarction, and the radiomics signature 
exhibited a satisfying performance in both the develop-
ment and validation cohorts. Furthermore, they also 
proposed that the radiomics signature may assist in ther-
apeutic options. It is noteworthy that in the early stage 
of stroke, especially in the hyperacute phase, radiologists 
may be unable to exactly outline the extent of infarctions, 
and it is usually uncertain whether the basal ganglia area 
is involved. The MCA is the most commonly involved 
artery in ischemic stroke [25].

The present study evaluated the value of a CT-based 
radiomics signature for discriminating the TFS in 
patients with acute ischemic stroke (MCAO in the M1 
segment). These present findings identified six features, 
including the RLM (LongRunLowGreyLevelEmpha-
sis_angle90_offset7; LongRunEmphasis_angle135_off-
set4), texture features (Inertia_AllDirection_offset7_SD; 
ClusterShade_AllDirection_offset1_SD), formfactor fea-
ture (SurfaceArea), and histogram parameter (Percentile 
20). The RLM, which characterizes a large area (groups 
of voxels) within the lesion to provide information on 
regional heterogeneity [26], was found to be related to the 
TFS. Therefore, we speculate that the lesion in ischemic 
stroke patients beyond 4.5 h after symptom onset might 
be more heterogeneous than that in patients within 4.5 h. 
Texture features reflect the distribution of relevant ele-
ments and the appearance of the surface, and play an 
important role in identifying ROI or objects in the image. 
Thus, they might demonstrate the surface condition 
(e.g. smoothness, coarseness, etc.) of the lesion caused 
by brain edema, or abnormal morphology of ventricles, 

cisterns and sulci in the pathophysiological processes 
of the acute cerebral infarction. Formfactor features, 
which represent the changes in shape, area and volume, 
can reflect the microscopic structures [12]. Our results 
indicate that the surface area of the ischemic lesion may 
change with the time course of the stroke. Histogram 
parameters can delineate the distribution of voxels in 
the CT imaging. The percentile, p%, of a distribution 
is defined as the value of the brightness a such that: 
P(a) = p%. Percentile 20, as one of the histogram param-
eters, was positively correlated with ASPECTS shown in 
our results. The ASPECTS is a method for assessing the 
extent of ischemic changes on CT. Therefore, we guess 
that the 20th percentile density value of the lesion on CT 
images in patients beyond 4.5 h after symptom onset is 
lower than that in patients within 4.5 h.

The present study demonstrated that the radiomics sig-
nature is associated with the clinicoradiological charac-
teristics of stroke. In addition to the rad-score calculated 
from the radiomics signature, age and ASPECTS were 
also identified as potential factors related to the TFS. 
Our research indicated that the radiomics signature is a 
valuable tool for distinguishing the TFS ≤ 4.5 h, with an 
AUC of 0.770 and 0.792, in the development and valida-
tion cohorts, respectively. Interestingly, it was found that 
patients who presented to the emergency department 
for cerebral infarction within 4.5 h after symptom onset 
were older than those beyond 4.5  h. García-Bermejo 
et al. [27] also observed consistent results. In their study, 
patients treated for cerebral infarction with intravenous 
tPA within 4.5  h after symptom onset were older than 
those beyond 4.5 h (< 4.5 h: 72.2 ± 10.4 years old; > 4.5 h: 
69.02 ± 13.2 years old). In the present study, the investi-
gators speculated that the elderly might be more alert to 
the occurrence and presentation of cerebral infarction, 
when compared to younger individuals. Furthermore, 
it was found that patients who presented to the emer-
gency department for cerebral infarction within 4.5  h 
after symptom onset had higher ASPECTS scores, when 
compared to those beyond 4.5 h. The ASPECTS score is 
a systematic method for assessing the extent of ischemic 
changes on CT [13]. The reason for this difference may 
be that the extent of the ischemic changes could be more 
easily visually perceived with the time course of the 
stroke.

In the present study, a model was also constructed 
for discriminating the TFS by combining the radiom-
ics signature and clinicoradiological characteristics. To 
the best of our knowledge, the present study is the first 
to develop and validate a radiomics model for the TFS 
discrimination in acute stroke patients with MCA M1 
occlusion. The combined model exhibited a relatively 
high efficiency, with an AUC of 0.808 and 0.833, in the 
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development and validation cohorts, respectively, though 
there was no significant statistical difference between the 
AUC of the combined model and that of the radiomics 
signature. The external validation also showed the good 
performance of the combined model, with an AUC of 
0.820 in the external validation cohort.

Limitations in the present study mainly include the fol-
lowing: (a) Due to the retrospective nature of this study, 
the quantitative analysis of cerebral CT perfusion can-
not be performed. Therefore, we didn’t evaluate the value 
of perfusion imaging for discriminating the TFS. (b) 
The amount of data is relatively small. A further study 
on more populations is necessary to verify and possibly 
expand these results. (c) The median collateral score was 
1 (interquartile range (IQR), 1–1) for both development 
and validation groups. This might be a weakness of the 
study because the whole population in question would 
have few collaterals.

Conclusions
Our study establishes a model for discriminating the TFS 
in patients with acute MCAO, which may be helpful for 
the accurate discrimination of the onset time, and may 
guide the clinical decision-making.
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