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Abstract

Background: Analytic morphomics, or more simply, “morphomics,” refers to the measurement of specific
biomarkers of body composition from medical imaging, most commonly computed tomography (CT) images. An
emerging body of literature supports the use of morphomic markers measured on single-slice CT images for risk
prediction in a range of clinical populations. However, uptake by healthcare providers been limited due to the lack
of clinician-friendly software to facilitate measurements. The objectives of this study were to describe the interface
and functionality of CoreSlicer- a free and open-source web-based interface aiming to facilitate measurement of
analytic morphomics by clinicians - and to validate muscle and fat measurements performed in CoreSlicer against
reference software.

Results: Measurements of muscle and fat obtained in CoreSlicer show high agreement with established reference
software. CoreSlicer features a full set of DICOM viewing tools and extensible plugin interface to facilitate rapid
prototyping and validation of new morphomic markers by researchers. We present published studies illustrating the
use of CoreSlicer by clinicians with no prior knowledge of medical image segmentation techniques and no formal
training in radiology, where CoreSlicer was successfully used to predict operative risk in three distinct populations
of cardiovascular patients.

Conclusions: CoreSlicer enables extraction of morphomic markers from CT images by non-technically skilled
clinicians. Measurements were reproducible and accurate in relation to reference software.

Keywords: Analytic morphomics, Morphometric analysis, Body composition analysis, Planimetric measurements,
Medical image segmentation, Computed tomography, Obesity, Sarcopenia

Background
Syndromes characterized by pathological alterations of
body composition, such as sarcopenia, cachexia and
obesity, are increasingly prevalent and portend an in-
creased risk of adverse health outcomes. Accordingly,
there is a growing interest, both at the clinical and aca-
demic levels, in using body composition analysis to iden-
tify vulnerable patients who would benefit from targeted
evaluation and treatment [1]. Analytic morphomics, or
more simply, “morphomics,” refers to the measurement
of specific biomarkers of body composition from med-
ical imaging, most commonly computed tomography
(CT) images [2–4]. An emerging body of literature

supports the use of morphomic markers measured on
single-slice CT images for risk prediction in a range of
clinical populations (Table 1). The analytic morphomics
group at the University of Michigan has had a pioneer-
ing influence in the field and has undertaken a major
standardization effort with the publication of reference
values derived from a large population of patients [5].
Despite promising results, adoption by healthcare pro-
viders has been limited due to the lack of clinician-
friendly software to facilitate measurements.
Figure 1 displays a typical workflow for determination

of morphomic markers; which begins by opening a study
in DICOM format, selecting a validated reference ana-
tomical level on a reconstructed view (e.g. the level of
the 4th lumbar vertebra on a sagittal view), visualizing
the corresponding axial image, and finally performing
measurements using a combination of automatic and
manual segmentation tools. Markers that can be
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extracted using this workflow include tissue areas
(muscle, fat, solid organs, bone), as well as attenuation
values in Hounsfield units (HU), which provide an index
of tissue composition or “quality.” Key advantages over
other methods of body composition assessment include
the wide availability of existing CT datasets, the ability
to perform measurements retrospectively, and the ability
to accurately assess tissue quantity, quality and distribu-
tion with high reproducibility and minimal assumptions.
Table 1 displays selected examples of morphomic

markers of muscle and adipose tissue derived from
single-slice measurements on abdominal or thoracic CT
scans, with accompanying references to clinical valid-
ation studies. The wide range of applications illustrates
the versatility of the proposed workflow. Automated seg-
mentation algorithms are referenced when available.
Given the increasing availability of clinically indicated

CT imaging studies [6] and the mounting recognition of
morphomics as a prognostically relevant method of body
composition assessment, it is highly desirable to facilitate
measurements for researchers and clinicians. However,
developing software for the morphomics community
poses unique development challenges because the field
exists at the confluence of multiple scientific disciplines,
including medical image analysis (MIA), body compos-
ition research, clinical medicine, and epidemiology. We
have identified four key challenges and corresponding
design requirements for software to bring morphomics
“to the bedside” and to a larger community of re-
searchers (Table 2). In this section, we review existing
MIA software in light of these design constraints and
identify pertinent limitations of established approaches.
A first key challenge is to bridge the gap in technical

knowledge between body composition researchers, who
develop and validate morphomic markers, and health-
care providers who can utilize these markers to enhance
their evaluation and treatment of patients. The ability
quickly review and edit results is crucial in the clinical

Table 1 Selected single-slice morphomic markers derived from
muscle and adipose tissue area measurements on thoracic and
abdominal CT scans
Category Marker name and definition Segmentation algorithms ID

Muscle
(lumbar)
− 29 to
+ 150
HU [24]

Psoas muscle area:
combined area of the right
and left psoas muscles, in
mm2 [25–47].

Shape model [48, 49] PMA

Psoas muscle attenuation:
mean attenuation value
within the psoas muscles, in
HU [31, 46, 50–55].

– PMA_HU

Lumbar dorsal muscle area:
combined area muscle
contained within the region
posterior to the spine and
ribs, no more lateral than
the lateral-most edges of
the erector spinae muscles
(includes latissimus dorsi,
quadratus lumborum, and
erector spinae muscles), in
mm2 [56–59].

Atlas-based [60],
thresholding-based [61],
fuzzy C-means [62, 63]

LDMA

Lumbar dorsal muscle
attenuation: mean
attenuation value within the
dorsal muscles, in HU [63,
64].

– LDMA_HU

Total lumbar muscle area:
combined area of the psoas,
rectus abdominis,
pyramidalis, transversus
abdominis, internal and
external oblique, plus the
dorsal muscle area, in mm2

[31, 56, 64–66]

FEM-based [67, 68] TLMA

Total lumbar muscle
attenuation: mean
attenuation value within the
lumbar muscles, in HU [69].

– TLMA_HU

Muscle
(thoracic)
− 129 to
+ 150
HU

Total thoracic muscle area:
combined area of the
pectoralis, intercostal and
paraspinal muscles, in mm2

[70–73].

FEM-based [74] TTLMA

Total thoracic muscle
attenuation: mean
attenuation value within the
lumbar muscles, in HU (ND).

– TTLMA_HU

Fat
(lumbar)
−190 to
− 30 HU

Visceral fat area: total area of
intraperitoneal fat, in mm2

[31, 54, 55, 75–79].

Fuzzy C-means [80], fuzzy
affinity [81], thresholding
[82], separation mask [83],
polar projection ([84], edge
linking [85], other [86]

VFA

Visceral fat attenuation:
mean attenuation value
within the visceral fat, in HU
[51, 53, 87–93].

– VFA_HU

Subcutaneous fat area: total
area of fat tissue between
the skin and abdominal/
back wall, in mm2 [31, 51,
54, 55].

FEM-based [68], separation
mask [93], other [93]

SFA

Subcutaneous fat
attenuation: mean
attenuation value within the
subcutaneous fat, in HU [53,
87–91].

– SFA_HU

Total abdominal fat area:
combined area of visceral
and subcutaneous fat tissue,

– TAA

Table 1 Selected single-slice morphomic markers derived from
muscle and adipose tissue area measurements on thoracic and
abdominal CT scans (Continued)
Category Marker name and definition Segmentation algorithms ID

plus intramuscular fat, in
mm2 [93].

Total abdominal fat
attenuation: mean
attenuation value within the
abdominal fat, in HU (ND).

– TAA_HU

Fat
(thoracic)
− 190 to
− 30 HU

Epicardial fat area: fat
located between the heart
and the pericardium, in
mm2 [94–100].

Random forest [101, 102],
geodesic active contours
[103], fuzzy C-means [104],
other [105]

EFA

Epicardial fat attenuation:
mean attenuation value
within the epicardial fat, in
HU [106]

– EFA_HU
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setting, where expert validation of computer-generated
data is considered standard of care. Thus, for morpho-
mics data to translate into improved decision-making, a
streamlined, “clinician-friendly” interface for reviewing
results is essential.
Current MIA software packages have adopted the

“toolbox” approach of user interface organization. This
approach is flexible, yet results in a high level of inter-
face complexity due to the multiplicity of controls and
menus. For example, the main user control interface in-
cludes 27 visible clickable control elements in Nora [7],
28 in ImageJ [8], and 32 in slice-O-Matic [9]. By con-
trast, the “wizard” approach is an organizational pattern
that presents essential controls in step-by-step fashion,
which facilitates the execution of unfamiliar tasks. The
wizard or “workflow-oriented” approach is most useful
for “a non-expert user [who] needs to perform an infre-
quent complex task consisting of several subtasks, where
decisions need to be made in each subtask.” [10] While
the workflow-oriented pattern may be a valuable ap-
proach for clinician-facing MIA software, only one of
the major packages evaluated has adopted this approach
as a primary user interface organization pattern, and this
software did not support workflows for measurement of
analytic morphomics [11].
A second key challenge is cross-platform compatibil-

ity, which is crucial to address owing to the heterogen-
eity in computing environments deployed by teams of
researchers and clinicians working across different

institutions. Of the major currently existing tools,
Slice-O-matic, Materialize [12] and Segment [13] only
offer Windows support, while Osirix only supports
Mac environments [14]. 3DSlicer [15], ImageJ [15]
and ITKSnap [16] are notable free options with good
cross-platform compatibility. Although extremely power-
ful, their interfaces have not been adapted to facilitate
measurements by non-clinicians with little technical
knowledge in image analysis.
Most current MIA software packages (e.g. ImageJ, Seg-

ment, Osirix, 3DSlicer) are distributed via desktop apps that
are installed on end-user machines, and these require con-
tinuous updating to ensure forward-compatibility. Yet, clini-
cians may be performing measurements on work machines
where MIA software has not been installed, and, in many
cases, institutional restrictions prevent end-users from in-
stalling such software in the clinical environment. Over the
last decade, browser applications, or “web apps,” have
emerged as a more sustainable means of achieving robust
cross-platform independence; these can be used instantly on
any machine connected to the Internet, without prior instal-
lation. Nora is an example of an MIA software with an em-
phasis on brain imaging that is written entirely as a browser
application [7]. Nora provides many advanced analysis fea-
tures; limitations of this project are the lack of a plugin
architecture, moderate to high interface complexity, and lack
of a formal open-source development process.
A third challenge is to facilitate prototyping, validation

and adoption of algorithms to segment scans and

Table 2 Design objectives for translational morphomics software

Design objective Rationale

Clinician-friendly, goal-directed interface Clinicians may not have the time and technical know-how required to use professional medical image
analysis software.

Cross-platform support, minimal or no
install required

Researchers and clinicians collaborating on morphomics projects across institutions are likely to work in
different computer system environments. Clinicians may be performing measurements on work machines
where MIA software has not been installed.

Extensibility via cloud-enabled plugins A flexible plugin interface enables application of the software to a wider variety of use cases, and cloud
abilities facilitate the processing of large datasets.

Free license and open source codebase An open-source codebase and reuse-friendly license contributes to project sustainability by allowing
contributions from other researchers.

Fig. 1 Typical workflow for measurement of analytic morphomics
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measure morphomic markers. Notably, at the time of
writing, none of the segmentation algorithms presented
in Table 1 had been released as a plugin compatible with
freely available MIA software. While some MIA software
have support for language-specific plugins (e.g. Java for
ImageJ, Objective C for Osirix, Matlab for Segment,
Python and C++ for 3DSlicer), the lack of cross-talk be-
tween these languages hinders the development of a ro-
bust plugin ecosystem. A modern method of providing
extensibility via “plugins” is the use of HTTP applica-
tion programming interfaces (APIs), which enable the
developer to write plugins in any language capable of
running a simple web server. As an added benefit,
computational resources in the cloud can be leveraged
with the same interface and ease of use as local plugins.
The neuroimaging community has already adopted
cloud-based tools such as MRIcloud [17], CBRAIN [18]
and VolBrain [19] to facilitate collaboration and sharing
of computational resources across geographically dis-
persed research groups. Given the large-scale nature of
the data sets used in morphomics, the community
would benefit from a platform that enables rapid proto-
typing and deployment of morphomics algorithms in
the cloud.
Finally, a free licensing model and an open-source

development process was chosen as a design goal to fa-
cilitate greater adoption of the software amongst re-
searchers, and to promote project sustainability by

allowing developers to contribute their own updates
and plugins. Given that the adoption of commercial
MIA software imposes a financial limit on wider-scale
collaboration, it is in the multidisciplinary spirit of the
morphomics community to involve all stakeholders in
building free, open-source alternatives that are equit-
ably available to a global audience of clinicians irre-
spective of cost.
As summarized in Table 3, a review of existing MIA

software identified that none satisfactorily addressed all
of the key design constraints that we have proposed to
guide development of translational morphomics soft-
ware. While many are comprehensive and powerful
tools, none of the currently available software tools pro-
vides a simple, clinician-friendly pipeline to facilitate
morphomic analysis. To address this unmet need, we
introduce the first web-based interface optimized for
measurement of morphomics, called CoreSlicer, which is
publicly available free of charge at https://www.coresli-
cer.com. Users can extend the software with their own
plugins running on their own machine or on cloud ser-
vices through HTTP endpoints. The source code to the
interface is available on GitHub, and allows users to run
the application on their local machines. In this paper, we
discuss the structure and functionality of CoreSlicer, val-
idate its results against reference software, and discuss
published studies illustrating its relevance for clinicians
and researchers.

Table 3 Selected major medical image analysis tools potentially suitable for morphomic analysis, features and limitations

Project name and URL Workflow-
oriented

Web
interface

Platform
independent

Plugin
interface

Web
plugins

Free
license

Open
source

Slice-o-matic
http://www.tomovision.com/products/
sliceomatic.html

N N N (Windows-only) N N N N

ImageJ
https://imagej.nih.gov/ij/

N N Y (Java app) Java only N Y Y

Materialize
http://www.materialise.com/en/medical/
software/mimics

N N N(Windows-only) N N N N

Segment
https://github.com/Cardiac-MR-Group-Lund/
segment-open/

N N N (Windows-only) Matlab only N Y Y

MIA
http://mia.sourceforge.net/

Y N N (POSIX-only) C++ only N Y Y

ITKSnap
http://www.itksnap.org/pmwiki/pmwiki.php

N N Y (binaries) C++ only N Y Y

3DSlicer
https://www.slicer.org/

N N Y (binaries) Python C++ N Y Y

Osirix
http://www.osirix-viewer.com/

N N N (Mac only) Objective C
only

N Y Y

Nora
http://www.nora-imaging.com/

N Y Y N N Y N

CoreSlicer
https://www.coreslicer.com

Y Y Y Any
language

Y Y Y
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Implementation
Specifications of CoreSlicer
CoreSlicer is a browser-based application and is written
entirely in Javascript, conformant to the ECMAScript 5
specification. A public running instance of CoreSlicer is
provided free of use at www.coreslicer.com. This public
running instance showcases elemental plugins for segmen-
tation of abdominal structures (Additional files 1 and 2).
Users may also download a standalone version of CoreSli-
cer free of charge at https://github.com/louismullie/coresli-
cer. The standalone version of CoreSlicer is released under
the MIT license.

Testing requirements
CoreSlicer is developed for and was tested on Google
Chrome, versions 65.0 and above. The Google Chrome
platform was selected due to its widespread adoption and
stability across multiple operating systems. Other
browsers are not currently supported. Tests were con-
ducted on a machine with a 2 GHz intel Core i5 processor
and 8 GB of rapid-access memory (RAM). A minimum 1
GB of RAM is recommended to load full-body CT scans
at 2.5 mm slice thickness, or 2 GB RAM at 1mm slice

thickness. A minimum processor speed of 1.0 GHz is rec-
ommended to support interface drawing functions.

Program structure
CoreSlicer is divided into 4 main modules (Fig. 2). As is
common for web applications, a “model-view-controller”
architecture is employed to enforce separation of con-
cerns between different application modules [20]. The
“Uploader” controlled provides functionality for loading
DICOM files from disk. The “Series” controlled handles
selection of a series of interest within a DICOM file and
decompression of the DICOM file, if necessary. The
“Level” controlled provides functionality to select a level
of interest on a sagittal reconstruction. The “Regions”
controller provides functionality for displaying DICOM
images and creating and editing regions of interest
(ROIs).

Graphical user interface
The CoreSlicer interface is organized into 4 main win-
dows (Fig. 3). From the “Uploader” window (Fig. 3a),
users can load one or more DICOM file(s) by dragging
and dropping or via the operating system’s native file se-
lect input. From the “Series” window, users can select a

Fig. 2 Program structure overview
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series of interest among those contained in the DICOM
archive. From the “Level” window (Fig. 3b), users can se-
lect a level of interest on a sagittal reconstruction image
of the previously selected series. From the “Region” win-
dow (Fig. 3c), users can define one or more ROIs, and
assign a custom HTTP endpoint that provides automatic
segmentation functionality for the relevant ROI. Users
can draw and edit an ROI using the threshold brush and
eraser tools. Results are exported to a ZIP archive con-
taining the segmentation masks as well as area and
Hounsfield unit measurements in comma-separated
value (CSV) format.

Extensibility via plugins
CoreSlicer can be extended via user-supplied webhooks
that provide segmentation functionality over an HTTP
interface. CoreSlicer’s plugin API structure is illustrated
in Fig. 4.
From the “Regions” window, when creating a new cus-

tom region, CoreSlicer allows users to assign a custom

HTTP webhook that is triggered when a user initiates
the draw action assigned to the corresponding ROI. In
response, a POST request is sent to the assigned end-
point containing the anonymized DICOM image binary
data and additional slice information encoded as a mul-
tipart FormData object (request MIME type multipart/
form-data). User endpoints return a binary segmentation
mask in PNG format (response MIME type image/png),
where all non-zero pixels are assigned a value of 1.
Further information is available from the user manual,
which can be found on Github (https://github.com/
louismullie/coreslicer).

Local deployment
Deployment on a local server can be performed with
minimal technical knowledge using Node.js, an open
source programming runtime that is supported by all
major operating systems including Windows, Mac OS
and UNIX. Local deployments can be updated to the
latest public version of CoreSlicer’s code via a single

Fig. 3 Graphical user interface overview. Panel a shows the “Uploader” window, where DICOM archives can be imported. Panel b shows the
“Level” window, using which an anatomical level can be selected. Panel c shows the “Region” window, using which regions of interest can
be segmented
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command, using the Git version management system. A
detailed guide on how to install a local deployment and
retrieve updates is available at https://github.com/louis-
mullie/coreslicer.

Implementation challenges
Although highly flexible and granular, the DICOM
standard is complex to manipulate because it supports
multiple numerical representation, data sorting and
compression formats. Cornerstone.js, an open-source
DICOM utility library, was used to parse DICOM attri-
butes and render DICOM images. A custom algorithm
was implemented to reorder slices based on their pos-
ition in space as determined from DICOM attributes.
Jpx.js, an open-source JPX decompression implementa-
tion forked from Mozilla’s PDF.js project, was used to
provide support for decompression of DICOM archives.
While browser-based applications are highly advanta-

geous for cross-platform compatibility, they represent a
“resource-costly” environment in which large file
manipulation are memory-expensive operations. The
embarrassingly parallel nature of DICOM slice decom-
pression enabled the use of concurrency to increase pro-
cessing speed by distributing data to a pool of 8
WebWorker processes running simultaneously. To fur-
ther optimize performance, CoreSlicer adheres to the
“lazy loading” design pattern, deferring the initialization
of memory-costly data structures until the point at
which the data is needed for user interface rendering.

In addition to performance limitations with regards to
manipulation of large files, browser environments have
limited native abilities for complex numerical operations.
To provide fast multiplanar reconstruction (MPR) for
CoreSlicer, we implemented an MPR algorithm using
WebGL, an HTML5 standard that allows for accelerated
manipulation of 3-dimensional data on the graphics pro-
cessing unit (GPU). To store DICOM images in memory
and manipulate them, CoreSlicer leverages TypedArray
objects, which provide a fast mechanism for accessing
raw binary data in Javascript, and which can be easily
transferred to the GPU using WebGL. The combination
of these strategies allows CoreSlicer to efficiently reslice
full-body CT scans, with minimal computational time,
on the order of < 500 ms.
To enable smooth drawing operations for manual

labeling of DICOM images, CoreSlicer leverages Canvas
API, which enables hardware-accelerated rendering of
two-dimensional graphics in the browser. A system
of stacked Canvas objects is used to represent mul-
tiple overlying layers in transparency. Tegaki.js, an
open-source HTML drawing library, is employed as
a foundation for CoreSlicer’s customized DICOM
drawing tools.

Security and privacy
Ensuring the security and privacy of user data is a key
implementation challenge in any web environment. The
core application functionality of CoreSlicer is imple-
mented entirely on the client machine and does not

Fig. 4 Plugin architecture overview. Panel a shows an example of a plugin served on a local endpoint. Panel b shows an example of a plugin
served on a remote endpoint
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require any transmission of data. This includes loading
DICOM files, decompressing image files if needed, per-
forming multiplanar reconstruction, as well as manually
drawing and editing measurements. The use of optional
segmentation plugins requires transmission of informa-
tion over the Internet. This information is protected in
transit using RSA encryption with 4096-bit keys, via the
Secure Sockets Layer (SSL) protocol. In addition,
through its plugin interface, CoreSlicer allows users to
securely transmit data directly from their machine to
user-controlled processing endpoints, without any infor-
mation transiting via CoreSlicer’s servers. Users who de-
sire enhanced privacy can run the CoreSlicer interface
on their local machines. CoreSlicer automatically strips
DICOM files of identifying information prior to any
form of external transmission in order to prevent
disclosure of protected health information.

Validation methods
Measurements from CoreSlicer were validated against
slice-O-matic, a commercial cadaver-validated reference
software. Cross-sectional area measurements (Fig. 4)
were performed by two trained observers (LM and JA),
respectively designated observer A and observer B. Ob-
server A performed measurements of VFA, SFA, TLMA
and PMA in triplicate, once using the slice-O-matic soft-
ware package (version 5.0), and twice using the manual
drawing tools in the CoreSlicer web interface (version
1.0). Repeated measurements were performed at least 1
week apart to limit observer bias. In a subset of 20 scans,
observers A and B each obtained measurements of VFA,
SFA, TLMA and PMA using CoreSlicer. All measure-
ments were performed on axial series at the superior as-
pect of L4, immediately below the vertebral endplate.
ROIs were defined as: psoas muscle area (PMA), total

lumbar muscle area (TLMA), visceral fat area (VFA) and

subcutaneous fat area (SFA). These were chosen among
markers illustrated in Table 1 based on the robustness
of the supporting clinical evidence. A representative
labeled image is illustrated in Fig. 5. Hounsfield unit
ranges were − 190 to − 30 for adipose tissue (VFA and
SFA), and − 29 to 150 for skeletal muscle (TLMA and
PMA) [9].

Statistical analyses
For comparisons between sets of measurements, mean
difference, 95% level of agreement (LOA), and Spear-
man’s correlation coefficient were calculated. Results are
presented using Bland-Altman plots (Additional file 3).
Additionally, for the main outcome of interest, which
compared measurements in CoreSlicer with measure-
ments in slice-O-matic, the intraclass correlation coeffi-
cient was calculated, and power analysis was performed.
Assuming a hypothesized ICC of 0.99, and a null ICC
value of 0.90, a sample of 50 subjects (2 measurements per
subject) has 100% power to detect a difference between
the two measurement methods at a 5% type 1 error rate.
All statistical analyses were performed with the STATA
software package (version 14.0, College Station, Texas).

Results
A total of 50 CT scans were drawn and analyzed from a
cohort of older adults undergoing a routine pre-
operative CT scans during assessment for a heart valve
procedure. The population comprised 24 women and 26
men, with a mean age of 80 years (range 64 to 96 years).
The mean BMI was 26.2 (range 20.5 to 44.5). Descriptive
statistics of the study population are presented in
Table 4.
Mean cross-sectional areas were 202.6 ± 82.5 cm2 for

VFA, 214.2 ± 105.8 cm2 for SFA, 119.05 ± 26.5 cm2 for
TLMA, and 19.77 ± 5.6 cm2 for PMA. In Fig. 6, a

Fig. 5 Illustration of muscle and fat segmentation at L4 in CoreSlicer
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Bland-Altman analysis is presented for comparison of
cross-sectional area measurement differences between
CoreSlicer and Slice-O-Matic. Mean absolute differences
in cross-sectional areas were 4.2 cm2 (− 4.7 to 13.1 cm2)
for VFA, 4.8 cm2 (− 7.7 to 14.7 cm2) for SFA, − 3.8 cm2

(− 10.1 to − 2.4 cm2) for TLMA, and 0.4 cm2 (− 1.4 to
2.2 cm2) for PMA. Mean differences in cross-sectional
areas expressed as relative percentages were 2.1% (− 2.4
to 6.5%) for VFA, 2.3% (− 3.9 to 7.3%) for SFA, − 3.0%
(− 7.9 to 1.9%) for TLMA and 2.0% (− 7.0 to 11.0%) for
PMA. Intra-class correlation coefficients were 0.998 for
VFA, 0.999 for SFA, 0.984 for TMA, 0.994 for PMA.
Spearman’s correlation coefficient exceeded 0.99 for all
ROIs, with p values of < 0.001.
In Figs. 7 and 8, Bland-Altman analyses are shown for

intra- and inter-observer measurements in CoreSlicer.
For repeated manual measurements by observer A,
mean absolute differences in cross-sectional areas were

− 0.2 cm2 (− 6.0 to 5.8 cm2) for VFA, − 1.1 cm2 (− 8.0 to
5.8 cm2) for SFA, 0.4 cm2 (− 1.7 to 2.4 cm2) for TLMA,
and 0.6 cm2 (− 5.7 to 7.0 cm2) for PMA. For comparison
of automated measurements plus manual corrections
between observers A and B, mean differences in
cross-sectional areas were 1.2 cm2 (− 2.7 to 5.6 cm2) for
VFA, − 0.2 cm2 (− 4.4 to 4.0 cm2 for SFA), − 0.8 cm2 (− 5.2
to 3.7 cm2) for TLMA, and − 0.5 cm2 (− 0.9 to 1.8 cm2)
for PMA.

Discussion
In this study, we introduced the CoreSlicer web interface
and software toolkit for analytic morphomics on CT
scan images. CoreSlicer is the first open-source
web-based MIA designed and optimized specifically for
analytic morphomics. Given its implementation as a
browser application, CoreSlicer is portable across all
major operating systems (Windows, MacOS, Linux and
Chrome OS), addressing an important limitation of sev-
eral existing tools and facilitating collaboration between
researchers working on different platforms. A core set of
tools required to manually review and correct segmenta-
tion results is provided within the interface, and the
workflow is organized in a simple to use, step-by-step
wizard. The average time required in CoreSlicer for
measurement of psoas muscle area, one of the most
robustly validated morphomic markers, was 22 ± 3 s,
supporting the benefit of a streamlined, workflow-
oriented interface.

Table 4 Descriptive statistics of the study population

Variable Males (N = 26) Females (N = 24)

Age (y) 81.4 ± 7.6 (64–96) 79.8 ± 7 (67–92)

Height (m) 1.7 ± 0.1 (1.6–1.9) 1.6 ± 0.1 (1.5–1.8)

Weight (kg) 75.7 ± 10.4 (54.5–100) 67.4 ± 15.3 (48.0–99.0)

BMI (kg / m2) 26.1 ± 2.8 (20.2–34.2) 26.2 ± 5.8 (21.5–44.5)

VFA (cm2) 252.5 ± 122.7 (114–603.9) 252.5 ± 122.7 (114–603.9)

SFA (cm2) 198.9 ± 62.9 (113.3–368.3) 208.6 ± 101.9 (89.4–584.6)

TLMA (cm2) 134.5 ± 22.3 (87.1–173.4) 102.7 ± 20.8 (80.0–155.7)

Fig. 6 Bland-Altman plot of difference in VFA, SFA and TLMA for manual measurements in CoreSlicer vs. Slice-O-Matic by Observer A
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Implementation challenges were addressed with state
of the art browser application technologies including
distributed processing of large files using WebWorkers,
hardware-accelerated 2D drawing using the Canvas
object, 3D multiplanar reconstruction on the GPU

using WebGL, and memory optimizations using
TypedArrays.
Researchers can use CoreSlicer to rapidly prototype

image segmentation tools in the language of their choice
using a standardized HTTP interface. Additionally,

Fig. 7 Bland-Altman plot of difference in VFA, SFA and TLMA for repeated manual measurements in CoreSlicer by Observer A

Fig. 8 Bland-Altman plot of difference in VFA, SFA and TLMA for computed-assisted measurements in CoreSlicer by Observers A and B
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CoreSlicer is the first web-based MIA software with
out-of-the-box support for asynchronous plugin execu-
tion, enabling the use of segmentation tools served in
the cloud at the click of a button. For researchers
seeking to expand, refine, or adapt the capabilities Core-
Slicer, the source code has been made available via an
open source repository.
We conducted duplicate measurements of well-

validated fat and muscle morphomic markers using
CoreSlicer and slice-O-matic, and demonstrated good
agreement between the two methods. The limits of
agreement were comparable with previously reported
values for comparison of the NIH ImageJ and
Slice-O-Matic software packages [8]. The intra- and
inter-observer variability of measurements was also
comparable with previously reported results [21], with
the relative differences all being < 3% and unlikely to be
clinically significant. Thus, measurements of VFA, SFA
and TLMA in CoreSlicer were reproducible and accur-
ate in relation to reference software.
The potential impact of CoreSlicer as a translational tool

for morphomics has been demonstrated in three studies
aiming to validate the prognostic value of PMA in cardiac
and vascular surgery patients. Our work and that of others
has shown that psoas muscle area (PMA), a surrogate of
lean muscle mass and lower extremity strength, correlates
with clinical frailty scores and is an important risk factor
for morbidity and mortality following invasive procedures
(Table 1). Mamane et al. [32] showed that PMA measured
using CoreSlicer was predictive of mortality in elderly
women undergoing TAVR. Drudi et al. [38] similarly
showed that PMA was predictive of mortality in patients
undergoing abdominal aortic aneurysm repair. Zuckerman
et al. [30] used CoreSlicer to show that PMA correlated
with length of stay following major cardiac surgery. Thus,
measurements of PMA in CoreSlicer were incrementally
predictive of adverse health outcomes in vulnerable pa-
tients undergoing invasive procedures. These measure-
ments could be obtained by medical trainees with no prior
medical image analysis training in under 1min.
These examples illustrate how morphomics can

empower healthcare professionals with prognostic infor-
mation to tailor treatment strategies and individualize
care. Patients found to have low muscle mass, often
unrecognized by the de facto “eyeball assessment”, may
benefit from targeted interventions such as exercise
therapy and nutritional supplementation to build muscle
mass and strength and minimize their risk of failed re-
covery after an illness or surgery [22]. This information,
which has been consciously absent from the clinical
arena owing to the inaccessible nature of its measure-
ment tools, is now readily obtainable within < 1 min at
the point of care by healthcare professionals with min-
imal pre-training.

Limitations
The results of this study must be considered in light of the
following limitations. First, since CT incurs ionizing
radiation and is not appropriate for the sole purpose of body
composition analysis, CoreSlicer is currently limited to the
analysis of images that have been acquired for clinical
purposes. Protocols are in development to acquire limited
slices with lower radiation. Second, although the CoreSlicer
software has been designed to visualize DICOM images
produced by both CT and MRI scanners, only the former
modality was tested and validated in this initial release of
the software. Given the widespread availability of clinically
indicated CT studies, we believe that this in no way limits
the potential large-scale impact of our software. Third,
CoreSlicer is currently capable of performing measurements
on one slice per study and is therefore not amenable to
compute volumetric measurements in its current iteration.
Importantly, the aims of the CoreSlicer project are not to
provide a comprehensive MIA or image segmentation tool-
kit, but rather to provide a streamlined workflow for analytic
morphomics, and to maintain the simplicity to achieve our
translational goal of a clinician-friendly interface. A large
number of single- slice morphomic markers have already
been validated and can be measured using CoreSlicer. Once
careful planning identifies how to optimally integrate
multi-slice functionality while keeping the interface com-
plexity at a minimum, three-dimensional visualization will
be implemented using existing open-source libraries [23].

Conclusions
CoreSlicer is a free and open-source web-based interface
aiming to facilitate measurement of analytic morphomics
on DICOM images by non-technically skilled clinicians.
CoreSlicer features a full set of DICOM viewing tools and
extensible plugin interface to facilitate rapid prototyping
and validation of new morphomic markers by researchers.
In this study, the CoreSlicer interface and functionality is
described, and validity of CoreSlicer measurements is estab-
lished by comparing its results with reference software on a
set of 50 abdominal CT scans, demonstrating good repro-
ducibility and agreement with reference software. We
present published studies illustrating the clinical relevance
of morphomic measurements obtained in CoreSlicer in
three distinct populations of cardiovascular patients.

Availability and requirements
Project name: CoreSlicer.
Project home page: www.coreslicer.com
Operating system(s): platform independent.
Programming language: Javascript.
Other requirements: none.
License: MIT.
Restrictions: CoreSlicer is not licensed for clinical or

commercial use.
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Additional files

Additional file 1: Algorithm for computer-assisted adipose and muscle
tissue segmentation on abdominal CT scan images. Describes the elemental
segmentation algorithms used to showcase CoreSlicer’s functionality on
www.coreslicer.com. (DOCX 100 kb)

Additional file 2: Figure S1. Illustration of muscle and adipose tissue
boundary detection in pseudo-polar coordinates. (PDF 1579 kb)

Additional file 3: Figure S2. Bland-Altman plot of difference in VFA,
SFA and TLMA for manual measurements in CoreSlicer by Observers A
versus automated segmentation. (PDF 836 kb)
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