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Abstract

Background: Quantitative radiomic features provide a plethora of minable data extracted from multi-parametric
magnetic resonance imaging (MP-MRI) which can be used for accurate detection and localization of prostate cancer.
While most cancer detection algorithms utilize either voxel-based or region-based feature models, the complexity of
prostate tumour phenotype in MP-MRI requires a more sophisticated framework to better leverage available data and

exploit a priori knowledge in the field.

prostate cancer.

Methods: In this paper, we present MPCaD, a novel Multi-scale radiomics-driven framework for Prostate Cancer
Detection and localization which leverages radiomic feature models at different scales as well as incorporates a priori
knowledge of the field. Tumour candidate localization is first performed using a statistical texture distinctiveness
strategy that leverages a voxel-resolution feature model to localize tumour candidate regions. Tumour region
classification via a region-resolution feature model is then performed to identify tumour regions. Both voxel-resolution
and region-resolution feature models are built upon and extracted from six different MP-MRI modalities. Finally, a
conditional random field framework that is driven by voxel-resolution relative ADC features is used to further refine
the localization of the tumour regions in the peripheral zone to improve the accuracy of the results.

Results: The proposed framework is evaluated using clinical prostate MP-MRI data from 30 patients, and results
demonstrate that the proposed framework exhibits enhanced separability of cancerous and healthy tissue, as well as
outperforms individual quantitative radiomics models for prostate cancer detection.

Conclusion: Quantitative radiomic features extracted from MP-MRI of prostate can be utilized to detect and localize

Keywords: Computer-aided detection, Multi-parametric MR, Prostate cancer

Background

Prostate cancer is the most diagnosed cancer in Canadian
men (excluding non-melanoma skin cancers), with
roughly 21,300 new cases and 4100 related deaths in 2017
[1]. Nevertheless, the prognosis for prostate cancer is rela-
tively high if it is detected sufficiently early [1]. Therefore,
fast and reliable screening methods for prostate cancer are
crucial.
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In the current clinical method, men with a positive dig-
ital rectal exam or an elevated prostate-specific antigen
(PSA) require a follow-up biopsy to assess malignancy.
The PSA test in particular has recently come under
scrutiny. Recent studies [2, 3] indicate that the PSA test
has a high risk of overdiagnosis, with an estimated 50% of
screened men being diagnosed with prostate cancer. The
overdiagnosis results in expensive and painful prostate
biopsies causing discomfort, possible sexual dysfunction,
and increased hospital admission rates due to infectious
complications [4]. The challenge diagnosticians face is
how to improve prostate cancer diagnosis by reducing the
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overdiagnosis caused by conventional screening methods
while still maintaining a high sensitivity.

Multi-parametric MRI (MP-MRI) is becoming an inte-
gral means for prostate cancer screening through which
unique information is captured using different imaging
modalities, thus allowing for a more comprehensive set
of imaging-based features to be extracted for diagnosis.
Although MP-MRI has shown considerable potential for
improving prostate cancer localization accuracy [5], it
requires an experienced clinician to extensively review the
data and perform a diagnosis. Furthermore, there can be
considerable inter-observer and intra-observer variability
in imaging-based screenings [6].

Introduced recently by the European Society of
Urogenital Radiology (ESUR), PI-RADS [7] (Prostate
Imaging-Reporting And Diagnosis System) is a set of
guidelines for interpreting multiple MR images, which
aims to raise the consistency between diagnosticians
through a common set of criteria. Despite PI-RADS and
further development to standardize the interpretation of
multi-parametric MR images [8], there is still a level of
subjectiveness that can lead to inconsistent diagnosis. As
such, computer-aided prostate cancer detection methods
are developed to assist diagnosticians with the process
and to increase not only accuracy, but reliability and
consistency of diagnosis across different clinicians.

Given the need for more consistent and reliable diagno-
sis, a variety of computer-aided methods have been pro-
posed for the purpose of prostate cancer detection using
MP-MRI [9-14]. In particular, radiomics-driven meth-
ods for computer-aided cancer detection has emerged in
recent years as holding great promise in improving diag-
nostic accuracy and consistency via the high-throughput
extraction and utilization of a large amount of quantitative
features for characterizing tumour phenotype [13-17].
While existing computer-aided cancer detection methods
for prostate cancer detection using MP-MRI utilize either
voxel-based or region-based feature models, the complex-
ity of prostate tumour phenotype in MP-MRI may require
a more sophisticated framework involving feature mod-
els at different scales to better leverage available data and
exploit a priori knowledge in the field.

In this paper, we propose a novel Multi-scale radiomics-
driven framework for automatic Prostate Cancer
Detection and localization (MPCaD) that incorporates
quantitative radiomics feature models characterizing
tumour phenotype at different scales. Aside from propos-
ing a unified framework for prostate cancer detection
via integration of multi-scale radiomics-driven feature
models, a number of novel contributions are introduced
in this paper.

A voxel-resolution radiomics-driven statistical textural
distinctiveness (RD-STD) method is introduced to iden-
tify tumour candidate regions. We extend significantly
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upon our preliminary work in [18] by incorporating a
comprehensive voxel-resolution radiomics feature model
composed of 96 features across five different MP-MRI
modalities (i.e., T2-weighted (T2w), ADC, DWI, Com-
puted High-B DWI (CHB-DWI), and Correlated Diffu-
sion Imaging (CDI) [19, 20]), compared to the simple
feature model composed of 19 features in [18].

A region-resolution radiomics-driven feature model
(RD-FM) is introduced to facilitate for tumour region clas-
sification. This region-resolution feature model captures
different regional characteristics including a multitude of
morphological and textural traits to better distinguish
between cancerous regions and healthy regions from the
set of tumour candidate regions. We extend greatly upon
the idea of a MAPS (morphology, asymmetry, physiology,
and size) radiomics feature model as introduced in [21] in
several significant ways.

First, the proposed RD-FM model incorporates 6 differ-
ent MP-MRI modalities (i.e., T2-weighted (T2w), ADC,
multiple DWTI at 4 different b values, CHB-DWTI, CDI, and
relative ADC (a total of 9 3D image volumes per patient)
compared to 4 used in the original MAPS model (i.e., T2w,
ADC, DWTI at a single b value, and CDI). In particular,
the integration of relative ADC features are important to
account for interpatient variations in ADC data. More-
over, in addition to morphology, asymmetry, and size
features, the proposed RD-FM uses 26 textural features
per modality compared to only 7 used in the original
MAPS model (a total of 242 features per patient images
compared to 42). Furthermore, the set of radiomic fea-
tures comprising the proposed RD-FM model differs from
that in the original MAPS model as the RD-FM model
consists of optimized radiomic features chosen based on a
feature selection process for a given performance criteria.
A voxel-resolution relative ADC-driven conditional ran-
dom field (rADC-CRF) framework is also introduced to
further refine the localization of the tumour regions in the
peripheral zone.

A more comprehensive set of clinical prostate MP-MRI
data from 30 patients with full PI-RADS scoring and his-
tology is introduced for assessing prostate cancer detec-
tion and localization performance, in comparison to the
smaller number of patient cases used in [18] and [21] (13
patient cases and 20 patient cases, respectively).

The paper is organized as follows. The related work in
the area of computer-aided prostate cancer detection is
presented in “Related work” section. The methodology
and underlying principles of the proposed multi-scale
prostate cancer detection (MPCaD) framework are
described in “Methods” section. Experimental setup
and results are presented in “Results” sections and dis-
cussions are presented and future work is discussed in
“Discussion” section. Finally, conclusions are drawn and
discussed in “Conclusions” section.
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Related work

Current methods for automatic computer-aided prostate
tumour detection typically use a supervised method
trained on a set of low-level features calculated from
MP-MRI. Ozer et al. [9] used parametric images derived
from dynamic contrast-enhanced (DCE) MRI, and pro-
posed the use of Relevance Vector Machines (RVM) with
a Bayesian framework. Ozer et al. then evaluated the
method against Support Vector Machines (SVM) with
the same framework. Madabhushi et al. [22] extracted
3D texture features from MRIs where a trained Bayesian
classifier assigned a malignancy “likelihood” to each fea-
ture independently, and the “likelihood” images were then
combined using an optimally weighted feature combi-
nation scheme. Litjens et al. [23] proposed a two-stage
prostate cancer detection algorithm via mpMRI where
first, voxel-based classification was applied and a like-
lihood map of cancerous regions was generated. Local
maxima detection was applied to the likelihood map to
find local maximum with the highest probability within
a predefined range (10 mm range) which yielded candi-
date regions via a region segmentation algorithm [23]. The
candidate regions were then classified using a classifier
and a feature model.

More recently, fuzzy Markov random fields (MRFs) have
been investigated for prostate cancer detection as unsu-
pervised methods [10-12]. Liu et al. [10] proposed a new
method for estimating the parameters of the Markovian
distribution of the measured data, and applied it to feature
vectors extracted from MP-MRI prostate datasets for can-
cer detection. Ozer et al. [11] proposed the use of fuzzy
MRFs as an unsupervised alternative to the previously
proposed SVM and RVM approaches, and evaluated the
classifiers using feature vectors formed from the periph-
eral zone of MP-MRI prostate datasets.

Artan et al. [12] presented a cost-sensitive SVM cancer
localization method as an extension to the conventional
SVM for prostate cancer detection. Trained via a full
grid search over the SVM kernel parameters, the cost-
sensitive SVM showed improvement in results compared
to conventional SVM. Artan et al. [12] also proposed
a new segmentation method by combining conditional
random fields (CRF) with a cost-sensitive framework
improving cost-sensitive SVM results by incorporating
spatial information.

Recently, a particularly promising and powerful
approach to computer-aided cancer detection is the
concept of radiomics [13—17] with a significant potential
for prostate cancer detection. Radiomics involves the
high-throughput extraction and utilization of a large
amount of quantitative features for characterizing tumour
phenotype. Radiomics facilitates for a high-dimensional
mineable feature space that can be utilized for both
detection and prognosis [15]. Studies on lung and
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head-and-neck cancer patients have confirmed the prog-
nostic power of radiomic features when it comes to patient
outcome prediction for personalized medicine [15-17].
However, the prognostic capability of radiomics feature
has only very recently been investigated for prostate
cancer detection and the quantitative characterization of
prostate tumour phenotype.

Khalvati et al. [14] extended the T2w- and ADC-based
features from Peng et al. [24] and introduced com-
prehensive radiomics feature models consisting of hun-
dreds of texture features derived from MP-MRI data
via feature selection and classification for the purpose
of voxel-resolution prostate tumour detection. Although
[14] produced reasonable results, one limitation of such
approaches is that they utilize the extracted radiomic fea-
tures associated with individual voxels on an independent
basis, and do not account for the overall morphologi-
cal or interconnected tissue characteristics reflective of
cancerous tumours. Cameron et al. [21] introduced a
region-resolution feature model for prostate cancer detec-
tion where suspicious regions were initially selected by
thresholding ADC and then, a feature model was applied
to these candidate regions. One shortfall of this approach
is its dependency on ADC threshold value to generate ini-
tial candidate regions. It has been recently shown [25] that
due to interpatient variation in ADCs of prostate periph-
eral zone, the relative peripheral zone ADCs of the tumour
and the surrounding normal regions are better correlated
with cancer grade compared to peripheral zone ADC of
tumour alone.

While existing computer-aided cancer detection meth-
ods for prostate cancer detection using MP-MRI utilize
either voxel-based or region-based feature models, to
the author’s knowledge, the incorporation of radiomics
feature models at multiple scales across several MP-MRI
modalities as well as the utilization of relative ADC map
via a conditional random field framework for the purpose
of prostate cancer detection and localization has not been
previously explored and can have strong potential for
improving diagnostic accuracy.

Methods

Figure 1 illustrates an overview of the proposed
framework for Multi-scale Prostate Cancer Detection
(MPCaD). MPCaD leverages the full set of voxel-level
quantitative radiomic features and incorporates region-
level feature descriptors in a pipeline to better character-
ize and detect tumour regions.

A large amount of voxel-resolution imaging features
are extracted from MP-MRI data using a quantitative
radiomics feature model. Next, a classifier trained via
these features is used to perform initial voxel-resolution
cancer detection based on radiomics-driven statisti-
cal textural distinctiveness (RD-STD). A set of region-
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Fig. 1 The proposed framework for automatic multi-scale prostate
cancer detection (MPCaD)

resolution features including morphological features are
derived from the initial tumour candidate regions using
a radiomics-driven feature model (RD-FM) to further
distinguish between the cancerous and healthy regions.
Finally, a relative ADC-driven conditional random field
framework (rADC-CRF) is applied to perform voxel-
resolution refinement of tumour regions produced by
the previous detections, which enforces the effect of the
relative ADC map on detecting cancerous regions. The
detailed methodology behind each step of the proposed
pipeline is described below including the imaging modal-
ities used for both voxel-resolution and region-resolution
feature models.
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Imaging methods

The main criteria for choosing imaging modalities used
in the proposed framework is twofold: images that are
part of PI-RADS and acquired non-invasively. PI-RADS
consists of T2w, DWI (ADC) as well as DCE images.
Instead of using DCE which requires contrast agent,
the proposed framework uses additional information
available by DWI images which includes computed high
b-value image, individual b-value images, and corre-
lated diffusion images. In addition, we compute relative
ADC map to account for interpatient inconsistencies in
ADC maps. These imaging methods are summarized
below.

T2-weighted imaging (T2w)

T2w is a MR imaging modality in which the sensitivity of
tissue is characterized by measuring the relaxation time
(spin-spin) of the applied magnetic field. The T2w image
of prostate usually shows a small reduction in signal in the
cancerous tissue [5].

Diffusion-weighted imaging (DWI)

DWI measures the sensitivity of tissue to Brownian
motion of water molecules. The signal intensity is
measured by applying pairs of opposing magnetic field
gradient pulses [26]. The diffusion-weighted signal, S, is
formulated as S = Spe =P where S is the signal intensity
without the diffusion weighting. The signal loss due
to spins diphase is controlled by b, which consists of
amplitude and duration of the diffusion pulses, gradi-
ent intensity and the time between the two pulses and
gyromagnetic ratio, and D represents the strength of the
diffusion.

Computed high-b diffusion-weighted imaging (CHB-DWI)
Although it has been shown that high b-value DWI images
(e.g., b-values greater than 1000 s/mm?) improve the
delineation between tumours and healthy tissues [27],
due to hardware limitations, most MRI machines in prac-
tice do not produce DWTI with b-values higher than 1500
s/mm? for prostate imaging. CHB-DWI is an alternative
approach to obtain high-b DWI from low b-value DW1I
acquisitions using a computational model [27, 28]. For our
experiments, we constructed CHB-DWI from DWIs with
b-values at 0, 100, 400, 1000s/mm? using a Bayesian model
with the least squares estimation technique, extrapolating
to the b-value of 2000s/mm?.

Correlated diffusion imaging (CDI)

CDI is a new DWI modality, which takes advantage of
the joint correlation in signal attenuation across multiple
gradient pulse strengths and timings to not only reduce
the dependency on the way diffusion gradient pulses
are applied, but also improve the separation between
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cancerous and healthy tissues. The CDI signal is obtained
via signal mixing as follows [19, 20]:

bn
CDI(x) = /,/b So(%)..Sp (%) P(Sp(%), ..., Su(x)|
V(%)) x dSo(x)...dS,(x) (1)

where x is spatial location, b; represents b values, S is
the acquired signal, P is the conditional joint probability
density function, and V(%) is local subvolume around x.

Relative ADC map

Discovered recently, due to interpatient variation in ADC
of prostate peripheral zone, relative peripheral zone ADCs
of tumour and surrounding normal regions are better cor-
related with cancer grade compared to peripheral zone
ADC of tumour alone [25]. To compensate for interpa-
tient variation in ADC, the relationship between ADC
values of tumour regions and surrounding regions can be
used to refine the result of tumour candidate classifica-
tion. First, we create a relative ADC map, which takes
this phenomenon into account. Next, we apply condi-
tional random field to enforce the effect of relative ADC
on tumour candidate classification.

For a given tumour candidate region of interest (ROI),
we first used morphological dilation function (with struc-
turing element of SE) to enlarge the ROI and then subtract
it from the original ROL This gives median value for the
surrounding region of the original ROI. Next, the dilated
(enlarged) ROI was normalized by the median value of
the surrounding region. Once this was done for each can-
didate ROI, all normalized dilated ROIs were combined
together and then replaced the original dilated ROIs in
the ADC map. The final map was normalized once more
with respect to the mean value of median surrounding
regions of all candidate ROIs. Algorithm 1 lists the steps
for generating relative ADC map.

Algorithm 1 Relative ADC Map Calculation
1: for each ROI; within ADC map do
2 RoO[fated — ROL; @ SE
3: ROI«Surmund — ROIdilated \ ROI
‘ L 1
4 Med;"" = median (ROI;“” " "””d)

dilated
RO[i ilate

dilatedNorm __
5: ROI i = e df”r

end for
: ADCpyp = ADC \ (U ROIfl”“fed>
i

a

~

8: ADC = ADCtmp U (U RO[;iilatedNorm)
i

ADC
mean(Meds#")

9: ADCrelative =
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Tumour candidate region identification via
Voxel-resolution Radiomics-driven statistical textural
distinctiveness (RD-STD)

Similar to [18], we identified suspicious prostate tissue
via statistical textural distinctiveness using cross-modality
texture features extracted from MP-MRI data. Voxel-
resolution texture representations were used to cap-
ture healthy and cancerous prostate tissue characteristics
present in MR imaging. The texture feature model pro-
posed in [14] was used to extract 96 low-level texture
features derived from T2w images, ADC maps, CHB-DW
data, and CDI data. Table 1 summarizes all features used
in this feature model.

Given the full set of texture features /(x), a compact
version t(x) is generated using the # number of princi-
pal components of /(x) via principal component analysis
(PCA):

() = (Pi(h(x)|1 < i < u) 2)

where ®@; is the i principal component of /(x). As [18]
determined through empirical testing, # components of
h(x) were selected to represent 90% of the variance of all
the textural representations.

Given textural representations of the prostate tissue, a
sparse texture model is learned to characterize healthy
and suspicious tissues. A global texture model is defined
using t(x) representing the characteristics of healthy and
cancerous prostate tissues. However, an MRI slice can be
generalized as a set of regions where a unique texture pat-
tern is repeated in each one. Furthermore, global texture
modeling is computationally expensive which leads us to
incorporate a sparse texture modeling framework where

Table 1 Summary of feature groups in proposed
Radiomics-Driven Statistical Textural Distinctiveness (RD-STD) [14]

Number of
features

Feature group Description

Textural (15t-order) 4 Mean, Standard deviation,

Kurtosis, Skewness

Energy, contrast, correlation,
variance, inverse difference
moment normalized,

Sum average, sum variance,
entropy, sum entropy,

difference entropy,

Information measure of
correlation, homogeneity,
autocorrelation

Difference variance, dissimilarity,
cluster shade, cluster prominence,
maximum probability

Textural (2"-order) 72

(18in each of 4
directions)

Gabor filters 12 3 scales and 4 orientations

Kirsch filters 8 8 directions

Total 9 All features
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the number of regions of unique textures is significantly
fewer than the number of voxels in £(x). As such, a sparse
texture model comprising of a small set of m local texture
representations can be defined as follows:

T" = {1 <i<m} 3)

where each texture atom represents the mean and covari-
ance (ie, t/ = M %;) of a local texture representation,
and is learned via expectation maximization [29].

Suspicious regions in prostate tissue are unique and
texturally distinct relative to healthy tissue. The distinc-
tiveness of these texture patterns can be quantified using
the concept of statistical textural distinctiveness [30]. The
Kullback—Leibler (KL) divergence [31] is used to define
the statistical textural distinctiveness between two local
texture representations (denoted as 7 and tj’ ) in the sparse
texture model:

Y _
Bij = log |2]i| — u + trace (Ej 12,-) (4)
T 1
O e (O
+ 2

where u is the number of PCA components selected, M
and I3 represent the mean of ¢/ and tj' , respectively, and X;

and %; represent the covariance of ] and tjr , respectively.
As such, the distinctiveness metric ;; increases as the tex-
ture patterns of ] and tjr become more distinct from one
another.

Due to the uniqueness and statistical occurrence of the
corresponding texture characteristics, salient regions in
prostate MRI data can be interpreted as suspicious as
the majority of prostate tissue is typically healthy. Given
a test set of texture features #(x); extracted from MRI
slices, the saliency map for an MRI slice can be computed
using the learned sparse texture model where for P (t; |Z)
(the occurrence probability of ¢] in t(x)z), saliency «; is
computed as:

a =Y PP (lt@)z). (5)

j=1

For saliency «;, the voxels in the corresponding set
of texture representations S; are considered salient
(and therefore classified as suspicious tissue) given that
o; > %2, and all other voxels are classified as healthy.
Therefore, each voxel x in a test set is assigned a label y:

:{1xeSi,o.zi>°‘”§‘”‘ ©)
0 otherwise

Tumour region selection via a region-resolution
Radiomics-driven feature model (RD-FM)

Once tumour candidate regions were identified, the next
step in the proposed MPCaD framework is to develop a
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quantitative radiomics feature model that extracts fea-
tures from each candidate regions to determine which
regions are more likely cancerous. The radiomics feature
model proposed here is based on a greatly extended
version of MAPS model introduced in [21]. The MAPS
model calculates different types of features representing
Morphology, Asymmetry, Physiology, and Size of each
candidate region. While the proposed RD-FM model
incorporates 6 different MP-MRI modalities (i.e., T2w,
ADC, multiple DWT at 4 different b values, CHB-DW]I,
CD]J, and relative ADC), the original MAPS model used
only 4 (i.e, T2w, ADC, DWI at a single b value, and
CDI). In addition, the proposed RD-FM uses 26 textural
features per modality compared to only 7 used in the
original MAPS model.

In contrast to [21] where the physiology features were
calculated for a local sliding window within the candi-
date region and then averaged across all windows, here,
we calculate these features with respect to the entire can-
didate region as a global feature. The motivation behind
this approach is the fact that textural characteristics of tis-
sue are better represented when the entire region is taken
into account rather than a local window (e.g., 3 x 3). For
example, while patches of a candidate region may appear
homogeneous, when the entire candidate region is con-
sidered, it may be a heterogeneous region, which is an
important characteristic for cancerous regions.

Once the features are calculated for candidate regions,
in contrast to the original MAPS, a feature selection
method is applied to select best features in terms of
the ability to separate the cancerous regions from non-
cancerous ones. The selected best features are then fed
into a SVM classifier. We adopted the method proposed in
[14] to optimize the results of the feature model (RD-FM)
for specificity, sensitivity, and AUC using different feature
selection criteria.

MAPS feature model

MAPS feature model consists of 4 feature categories:
morphology, asymmetry, physiology, and size. While
morphology, asymmetry, and size (Fj,;s) depend on
the shape and size of the tumour candidate regions,
physiology features (F,) extract textural characteristics of
the regions. Therefore, morphology, asymmetry, and size
features are independent of the imaging modality under
study whereas the physiology features are extracted from
different imaging modalities as listed below:

I =T2w

I, = ADC

I3 = Relative ADC

I, = CHB-DWI: b-value at 2000s/mm1>
Is; = CDI

I = by: b-value at Os/mm?
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e [, = by: b-value at 100s/mm?>
e I3 = b3: b-value at 400s/mm?>
o [y = by: b-value at 1000s/mm>

Morphology A set of features are computed to charac-
terize the structural property and morphology of tumour
candidate regions. Three morphological features are com-
puted from the region boundary. We calculate the first
morphology feature as the normalized difference in area
between the morphological closing and opening of the
region, using an identical disk structuring element [32]:

M Aclosed — Aapened
= (7)
Ainitial

where A denotes the area of a region. Peaks and valleys
in the border of the region will cause the area to increase
after closing, while it will decrease after opening. Thus,
regions with irregular borders will have a greater differ-
ence between these two values, and the feature value will
be larger.

The second morphological feature is calculated as the
normalized difference between the length of the region’s
perimeter before and after eliminating high-frequency
components in the Fourier space:

ng _ [Pinitial _PP reconstruction| ) (8)
initial
where P is the perimeter of each region. Since high-
frequency components capture rapid changes in the
region shape, this feature will be greater for regions with
rapidly-varying boundaries than for those with smooth,
slowly-varying boundaries [32].

The third morphological feature examines the area dif-
ference between two Fourier reconstructions of the region
boundary, one at a low frequency and one at a higher
frequency:

fM _ | Ainitial © Areconstruction| (9)
3 =
|Ainitial U Areconstructionl

where @ represents the set symmetric difference, finding
voxels which are in the low-frequency reconstruction or
the high-frequency one, but not in both, normalized by
the area of the union of both reconstructions, denoted
by U.

Asymmetry The Asymmetry feature group represents
the degree of bilateral symmetry of a candidate region,
which is calculated by splitting the region in half along
an axis passing through its center of mass. The halves to
either side of this axis are then compared by taking the
difference in their areas, and normalizing it:

fA _ Alarge — Asmall
A e

(10)

Apormalize
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where Aj;pge and Agyqy represent the areas of the region
halves, chosen such that Ajyee > Agman, and Apormaiize
represents the area of the region used to normalize the dif-
ference. Four different Asymmetry features are computed
by choosing either the major or the minor axis to split the
region, and by choosing either the entire region area or the
area of the smaller half-region as A,aiize-

Physiology The physiology features include the first
order and second order statistical features. For first order
features, the pixels within the ROI are used to calculate
the features. To calculate second-order features, gray-level
co-occurrence matrix (GLCM) is calculated in horizon-
tal direction for adjacent pixels. To account for only those
pixels within the ROI, when calculating the GLCM, it is
verified whether both adjacent pixels belong to the ROI.
Table 2 summarizes all features used in the MAPS feature
model.

In total, for each ROI, 8 features are extracted for
morphology, asymmetry, and size features (Fj,,5) and 26
features are extracted for physiology features (F). As dis-
cussed, Fy,4s features are independent of imaging modality
and depend on the shape and size of the ROIL In con-
trast, for a given ROI, the F, features will be different
for each imaging modality. Therefore, each ROI will have
242 MAPS features in total (morphology 3, asymmetry 4,
size 1, physiology 234 = 26 x 9 where 9 is the number of
imaging modalities).

Table 2 Summary of feature groups in proposed
Radiomics-Driven Feature Model (RD-FM) [21]

Feature group Number of Description
features
Morphology 3 Area regularity (1), Perimeter
regularity (2)
Asymmetry 4 Region bilateral symmetry (4)
Physiology 26

Textural (1%t-order) 7 Mean, median, standard deviation,
minimum, maximum, kurtosis,

skewness

Energy, contrast, correlation,
variance, inverse difference
moment normalized, sum average,
Sum variance, entropy, sum
entropy, difference entropy,
normalized entropy,

Information measure of correlation,
homogeneity, difference variance,
Autocorrelation, dissimilarity,
cluster shade, cluster prominence,
maximum probability

Textural (2"-order) 19

Size 1 Size of region

Total 34 All features
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Feature selection model

We apply a feature selection method to choose the fea-
tures that contribute the most to the classification process.
For feature extraction function, we used the maximum rel-
evance, minimum redundancy (mRMR) technique [33],
which is based on maximum relevance and minimum
redundancy of features. We evaluate the selected features
with respect to sensitivity, specificity, and the area under
the ROC (Receiver operating characteristic) curve. In
other words, for a given feature group, the optimal feature
subset is the ones that maximize the desired evaluation
measure (e.g., area under the ROC curve).

Each imaging modalities (/;) is used to generate
physiology features (Fy,) and the feature selection method
is then applied to each feature set of each imaging modal-
ity Fp, to determine the optimal subset features for that
modality (Fy;). For imaging modality J;, Fy, is the original
physiology feature set and F,’ is n; optimal physiology
features which maximize the desired evaluation measure.
For morphology, asymmetry, and size features, they are
grouped together as F,,;s and then feature selection is
applied to pick the best reduced feature set. This produces
n features (F},,) which maximizes the desired evalua-
tion measure. These optimal subset of features (F;’ll, F;ZZ,

» Fpg» and Fli, ) are combined together and the feature
selection method is applied again to find the final subset
of features (F) that maximize the desired evaluation mea-
sure when combined together. Figure 2 shows the block
diagram of the proposed feature selection for RD-FM.

Tumour region modification using relative ADC-driven
conditional random field (rADC-CRF)
Once the tumour candidate regions were selected by
RD-FM, we apply a relative ADC-driven conditional
random field (rADC-CRF) method to perform final voxel-
resolution cancer detection refinement enforcing the rel-
ative ADC on the detection results. Conditional random
fields were first proposed by Lafferty et al. [34] and have
previously been used for image labelling [35]. In addi-
tion, in [36], it was shown that CRF can be used to
enforce the spatial constraints on prostate tumours such
as compactness.

Here, we extend upon the CRF model proposed in [36]
to leverage the full set of voxel-level quantitative radiomic
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features derived from relative ADC data while taking
into account the spatial relationships and quantitative
radiomics feature relationships between voxels to better
enforce relative ADC characteristics. The CRF framework
models the conditional probability of the binary label field
Y and corresponding X observations as follows [36]:

PY|X) =

exp(—E(Y, X)) (11)

1
Z(X)
where Z and E represent the normalizing and energy func-
tions, respectively. The prostate tissue labeling as healthy
or cancerous is optimized using a Maximum A Posteri-
ori (MAP) method where the best classification of healthy
and tumour tissues are achieved by minimizing the energy
function E:

Y* = argminE(Y, X) (12)
Y

where Y™ is the optimal solution given the patient’s rela-
tive ADC map. E(Y, X) is formulated as a combination of
unary and pairwise potential functions:

EY,X) =) a0 X)+ Y vp0p X) (13)

i=1 peC

E incorporates the data-driven unary function v, which is
the results of RD-FM classification and pairwise function
¥y, which contains inter-voxel radiomic features extracted
from relative ADC map across a set of clique structures
C. To obtain the final voxel-resolution tumour detection
results, the energy function E is minimized using gradi-
ent descent, and the binary label is assigned to each voxel
asy* e Y™

By taking full advantage of 96 voxel-resolution radiomic
features (similar to RD-STD) extracted from relative
ADC map, the final voxel-resolution cancer detection is
improved.

Results

In this section, the image data, quantitative results for
MPCaD, and the comparison with related work are
presented.

Fig. 2 Block diagram of the proposed radiomics-driven feature model (RD-FM).
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Image data

The performance of the proposed MPCaD was evalu-
ated using clinical MP-MRI data of 30 patients (17 with
cancer and 13 without cancer) acquired using a Philips
Achieva 3.0T machine at Sunnybrook Health Sciences
Centre (SHSC), Toronto, ON, Canada. The mean patients’
age was 62 £ 9 years. All data was obtained retrospec-
tively under the local institutional research ethics board.
For each patient, the following MP-MRI modalities was
obtained (Table 3): 1) T2w, ii) DWI, and iii) CDI. Images
were processed in the ProCanVAS (Prostate Cancer Visu-
alization and Analysis System) platform developed at
SHSC [37].

All imaging data were reviewed and marked as healthy
and cancerous by a radiologist with 20 and 15 years of
experience interpreting body and prostate MRI, respec-
tively. Using the biopsy location reported in the pathology
reports, the experienced radiologist compared the
MP-MRI images with the histopathology images/reports
marked by a pathologist as cancer (i.e., Gleason score
6 and above) and annotated the cancerous regions on
MP-MRI data. These regions corresponded to PI-RADS
scores of 3 and above. For these 17 cases with cancer,
4 cases had 2 tumours and the remaining 13 had one
tumour (21 tumours in total). For these 21 tumourous
regions, the PI-RADS scores were as follows: PI-RADS
score 5 (14 cases), PI-RADS score 4 (4 cases), and
PI-RADS score 3 (3 cases). For the 13 non-cancerous
cases, the PI-RADS scores were 2.

Experimental setup

To assess the efficacy of the proposed framework and
evaluate the effect of each pipeline stage on the prostate
cancer detection performance, we conducted a set of anal-
ysis using the methods detailed in “Methods” section.
First, radiomics-driven statistical textural distinctiveness
(RD-STD) was calculated to separate suspicious cancer-
ous voxels from healthy voxels using leave-one-patient-
out cross validation where on average, 212,000 and 7300
voxel-resolution feature vectors were used for train-
ing and testing, respectively. Then, a radiomics-driven
region-resolution quantitative feature model (RD-FM)
was applied to the candidate regions detected in the first
step to further distinguish cancerous from healthy regions
using leave-one-patient-out cross validation where on
average, 1183 and 41 region-resolution feature vectors

Table 3 Description of the prostate imaging data

Modality ~ DFOV (cm?) Resolution (mm3) ~ TE(ms)  TR(ms)
T2w 22 x 22 049 x 049 x 3 110 4687
DWI 20 x 20 156 x 156 x 3 61 6178
ol 20 x 20 156 x 156 x 3 61 6178
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were used for training and testing, respectively. In this
step, we also applied different feature selection criteria
to the radiomics feature model to assess their effects on
the detection results. Finally, a relative ADC-driven condi-
tional random field framework (rADC-CRF) was utilized
to refine the produced tumour regions again at voxel-level
enforcing the relative ADC values.

Quantitative results

Table 4 shows the detection results of the three sequential
procedures in the proposed MPCaD framework. RD-STD
produced the highest sensitivity of 0.92, coupled with a
low specificity of 0.07 and a low accuracy of 0.17. In the
second step, the best performance of RD-FM considerably
improved the specificity from 0.07 to 0.89, and achieved
a sensitivity and accuracy of 0.85. rADC-CRF refined
the results produced by RD-FM and further increased
the specificity to 0.90, and the accuracy to 0.86, while
maintaining sensitively at 0.85.

The results indicate a high percentage of tumour candi-
date regions are detected in the first RD-STD step (602),
but a large number of false positives exist in this voxel-
resolution detection (536 or 89%). These false positives are
effectively reduced by the following RD-FM radiomics fea-
ture model (79 or 13%), which utilizes region-resolution
radiomics and enables to further distinguish between can-
cerous and healthy tissue in the candidate regions. The
detection is finally refined at voxel-level by the rADC-CRF
framework (72 or 12% false positives), incorporating spa-
tial and radiomics feature relationship between relative
ADC voxels.

The second and third blocks in Table 4 give details on
the detection results of RD-FM and rADC-CRE, respec-
tively, using different feature selection criteria. Adopted
from [14], the RD-FM enables the selection of the best
subsets of features to perform the classification to maxi-
mize the corresponding performance evaluation metrics.
In our experiments, we examined three feature selection
criteria namely to maximize specificity, sensitivity and
area under curve (AUC) for ROC curve. As it can be
seen in Table 4, when the feature selection criteria is to
maximize specificity or sensitivity, RD-FM followed by
rADC-CRF generates the highest specificity (0.90) or sen-
sitivity (0.85). Using specificity as feature selection criteria
also gives the highest accuracy (0.86) compared to those
using sensitivity (0.85) and AUC (0.85). When using AUC
as feature selection criteria, RD-FM followed by rADC-
CRF produced a balanced result in terms of sensitivity
(0.83) and specificity (0.88).

rADC-CRF improves the specificity while maintaining
the sensitivity. Choosing specificity as the feature selec-
tion criteria, rADC-CRF stage increased the specificity
from 0.89 to 0.90 and accuracy from 0.85 to 0.86 with the
sensitivity remaining at 0.79. Choosing sensitivity as the
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Table 4 Evaluation results of each stage in MPCaD (Results are shown with 95% confidence interval)
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Procedure Feature Selection Criteria Sensitivity Specificity Accuracy

RD-STD - 0.92 [0.84 0.99] 0.07 [-0.02 0.16] 0.17 [0.08 0.27]

RD-FM Specificity 0.79 (067 0.91] 0.89 [0.85 0.93] 0.85 [0.80 0.90]
Sensitivity 0.85 [0.74 0.96] 0.86 [0.81 0.91] 0.84 [0.78 0.90]
AUC 0.83[0.71 0.95] 0.83[0.76 0.90] 0.83[0.78 0.89]
Average 0.82 0.86 0.84

rADC-CRF Specificity 0.79 (063 0.95] 0.90 [0.86 0.94] 0.86 [0.82 0.90]
Sensitivity 0.85[0.70 1.00] 0.87[0.820.92] 0.85[0.80 0.90]
AUC 0.83 [0.66 0.99] 0.88[0.83 0.93] 0.85[0.81 0.89]
Average 0.82 0.89 0.86

The bold font shows the best result

features selection criteria, rADC-CREF stage increased the
specificity from 0.86 to 0.87 and accuracy from 0.84 to
0.85 while maintaining sensitivity at 0.85. Finally, choosing
area under ROC curve as the feature selection crite-
ria, rADC-CREF stage increased the specificity from 0.83
to 0.88 and accuracy from 0.83 to 0.85 with sensitivity
remaining at 0.83. If the results for all 3 feature selec-
tion criteria are averaged, it is seen that rADC-CREF stage
increased the specificity from 0.86 to 0.89 and accuracy
from 0.84 to 0.86 while maintaining sensitivity at 0.82.
Figure 3 gives an overview of the performances of
different stages in the framework, with RD-FM and
rADC-CRF grouped by the feature selection criteria used
in RD-FM, as rADC-CRF was built on RD-FM results.
There is a dramatic improvement on specificity from RD-
STD to RD-FM as shown in the graph, which indicates
radiomic features at region-resolution has great separa-
bility for cancerous and healthy tissue. It is interesting

09 1

STD FM CRF FM CRF FM CRF

Specificity Sensitivity AUC

Fig. 3 MPCaD framework results. Legend denotes the result metrics
and the grouping in x axis (e.g., AUC) shows the feature selection
criteria used for experiments

to observe how the performance metrics evolves from
RD-FM to rADC-CRE, which exhibits the same pattern
in all three groups. Specificities and accuracies of rADC-
CRF improve over RD-FM across all cases by, on average,
about 3% and 2%, while sensitivities remains unchanged.

To summarize, RD-STD produced the highest sensitiv-
ity (0.92), aligning with our purpose to detect as many
tumour candidate regions as possible in the first stage.
RD-FM using specificity as feature select criteria (FM-
SPEC) maximized the detection for specificity (0.89) and
produced the highest accuracy (0.85) with sensitivity of
0.79. RD-FM with sensitivity as feature select criteria
(FM-SENS) resulted in the highest sensitivity (0.85) with
reasonable specificity (0.86) and accuracy (0.84). rADC-
CRF based on FM-SPEC further refined the results and
produced the highest specificity (0.90) and accuracy (0.86)
with maintaining sensitivity (0.79).

The results given here are based on regions detected
by the RD-STD stage, and classified by the RD-FM and
rADC-CREF stages. In practical scenarios, the end-goal is
usually to determine whether or not a patient has can-
cer, independent of regions within 3D volume of MP-MRI
data. To achieve this, we only look at the regions that
MPCaD determined to be positive for each patient (i.e.,
true positive and false positive regions combined). Using
a simple threshold (i.e., how many regions should be pos-
itive to call a patient cancerous), we were able to achieve
sensitivity, specificity, and accuracy of 0.76, 0.92, 0.83,
respectively at patient level. In other words, out of 30
patients (17 with cancer and 13 without cancer), we were
able to correctly detect 13 patients out of 17 as cancerous,
with only one false positive (healthy patient detected as
cancerous).

Figure 4 shows the prostate tumour candidates detected
in each stage of MPCaD compared to the ground-truth
regions. It clearly presents the detection improvements
through the different stages of the pipeline by utilizing
radiomic features at different resolutions. Second column
shows that via voxel-level detection, RD-STD captured
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Fig. 4 Visual comparison of identified prostate tumour candidates in each stage of the pipeline for 3 cases. Left to right: radiologist’s markings
(green), results produced by RD-STD (yellow), RD-FM (red), rADC-CRF (blue), and all results shown in one image

more suspicious tumour regions (e.g., 4) than the ground
truth (1). As shown in the third column, RD-FM cor-
rectly removed the 3 false positives and left only the true
positive, by using region-based radiomics. Shown in the
forth column, rADC-CRF made further refinement on
voxel-level of the result. The final result shows that the
cancerous region aligns better with the tumour contours
of the radiologist’s marking.

Comparison with other methods

MPCaD performance was compared to the original MAPS
model [21] as well as the most commonly used MP-MRI
that is noninvasive (T2w+ADC [24]). For T2w+ADC, we
modified the original algorithm of [24] where it was fed
with the tumour candidate regions detected by RD-STD
model followed by a texture feature model of T2w and
ADC images. The proposed MPCaD framework outper-
formed both the original MAPS model [21] and the con-
ventional MP-MRI of T2w+ADC model (i.e., Peng et al.
[24]) in all metrics (Table 5).

Discussion

Medical imaging is increasingly used in clinical practice
for diagnosis and treatment guidance of prostate can-
cer, for its ability to assess the characteristics of human

Table 5 Performance comparison with previous work

Method Sensitivity Specificity Accuracy
MPCaD 0.82 0.89 0.86
MAPS [21] 0.51 0.81 0.70
Peng et al. [24] 0.78 0.75 0.74

The bold font shows the best result

tissue noninvasively. Automated prostate cancer detec-
tion using MP-MRI is investigated actively and shows
great promise for the future in the diagnosis, treatment,
and monitoring of prostate cancer. Compared to con-
ventional MRI, MP-MRI enables better anatomical delin-
eation, improved specificity in characterization of lesion,
and a more reliable assessment of organ confinement of
the tumour to guide therapy [38]. As the first major con-
tribution, in addition to T2w and DWI, in this work, we
have also incorporated information from all available MR
image data including different b-value images of DWI
(i.e. b-values at 0, 100, 400, and 1000s/mm?). We have also
incorporated two extra image modalities namely CHB-
DWI [27] and CDI [19] to enrich our model in terms of
data diversity. Furthermore, we have used relative ADC
map to account for interpatient inconsistencies in ADCs
when it comes to separability of cancerous and healthy
tissues. Thus, the proposed framework utilizes a compre-
hensive set of MP-MRI modalities for accurate detection
and localization of prostate cancer.

Radiomics attempts to quantify tumour phenotypes by
applying a large number of quantitative image features
either voxel-based [14] or region-based [21]. As the sec-
ond major contribution, this paper presents a framework
for prostate cancer detection by integrating multiple fea-
ture models and taking full advantage of radiomic features
extracted at different resolutions/scales. The proposed
framework first implements an initial detection of cancer-
ous and healthy tissues based on statistical distinctiveness
at voxel-resolution (RD-STD). Then, it adopts a region-
resolution radiomics feature model to further distinguish
tumour and healthy tissues in the candidate regions (RD-
FM). Region-based approach is more robust to image
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noise and can produce less sparsely distributed tumour
candidates than voxel-based approach. The multi-scale
nature of the proposed framework improves the separa-
bility of cancerous and healthy tissue through the pipeline
and outperforms individual single-scale radiomics meth-
ods (i.e., voxel-based on region-based alone).

As another major contribution, the RD-FM presented
in this paper differs from the initial work [21] in sev-
eral aspects. The first is how tumour candidate regions
are prepared. In [21], an empirical threshold (e.g., 700)
was applied to ADC map to filter out tumour candi-
date regions, which is both subjective and cannot be
widely used due to variability in image acquisition across
scanners and interpatient inconsistency. In contrast, in
this paper, we detect tumour candidate regions from
healthy tissue through a statistical textural distinctiveness
method, in which the feature distributions of tumour and
healthy tissue are learned from the image data directly.
In this respect, this method is more objective and holds
greater translational potential. Another aspect lies in how
the region-based features are extracted. In [21], physiol-
ogy features were calculated for a local sliding window
within ROI and then average across all windows. In our
approach, we calculate these features with respect to the
entire ROI as a global feature, which better represents the
textural characteristics of the regions. We also integrate
new features extracted from relative ADC map to account
for interpatient variation in ADC maps. In addition, the
proposed RD-FM uses 26 textural features compared to
only 7 used in the original MAPS model. Finally, similar
to the RD-STD stage, in addition to 4 imaging modalities
used in [21] (T2w, ADC, CHB-DWI, and CDI), RD-FM
also use 4 individual b-value images of DW1I and relative
ADC to extract features.

With a feature selection radiomics model in its core,
another distinctive aspect of the proposed framework is
that it can be easily configured to optimize for sensitiv-
ity, specificity, or the area under the ROC curve, to fit
the targeted clinical procedure which imposes different
performance requirements. For example, cancer screen-
ing programs require high sensitivity. In such cases, we
can configure the model to use sensitivity as the perfor-
mance evaluation criteria to steer the feature selection
process which would lead to the best result for sensi-
tivity (e.g., 0.85) with reasonable results for specificity
(e.g., 0.87). For cases where higher specificity is required
(i.e., radical prostatectomy), one can use specificity as
the performance evaluation criteria to optimize the
results for specificity (e.g., 0.90) with acceptable sensitivity
(e.g., 0.79).

Finally, the last major contribution in the proposed
MPCad is the utilization of a conditional random field
(CRF) framework to incorporate the interpatient variation
in ADC maps as well as the enforcement of connectedness
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of cancerous regions in prostate. This is done by further
refining the results from RD-FM stage at voxel-resolution
through a CRF framework (rADC-CREF) to reinforce the
relative ADC map effect on the tumour region detection.
Previously, it was reported [36] that a CRF framework can
noticeably reduce the sparsely distributed tumour candi-
dates on results produced by voxel-based approach. In our
experiment, the CRF model is applied to relative ADC
map and results show it further increases the specificity
by reducing the number of false positive. It is impor-
tant to note that the CRF model incorporates not only
the spatial relationships between detection results from
RD-FM at voxel-resolution, but the quantitative radiomics
feature relationships between voxels in the relative ADC
map as well. This facilitates for the enforcement of inter-
connected tissue characteristics reflective of cancerous
tumours, thus better representing the actual cancerous
tissue phenotype.

The comparison of the proposed MPCaD with the
original MAPS model [21] and a conventional MP-MRI
model which included T2w and ADC textural features
[24] showed the superior performance of the proposed
MPCaD framework.

Given that in the clinical workflow, it is important to
determine whether or not a patient has cancer, our results
show that the proposed MPCaD framework can accu-
rately achieve this: out of 17 patients with cancer, 13 were
detected correctly with only 1 false positive case. This
confirms the capability of the proposed framework to be
used in real-world scenarios.

Future work for the proposed framework includes
improving the tumour candidate region identification
method. Sensitivity of the pipeline, to a large extend,
is limited by the tumour candidate region identification
method in the first step. If a tumour region is unde-
tected in the first step, it is hard to gain it back in
the following steps, if not impossible. We will investi-
gate other tumour candidate region generation methods
to improve the sensitivity, and detect as many tumour
candidate regions as possible in the first step. Super-
pixel segmentation is a good candidate and shows great
promise in generating intra-segment homogenous, regu-
lar shaped and sized regions, which are ideal in serving as
structural elements of both cancerous and healthy regions
[39]. Furthermore, future work also includes evaluating
the proposed framework on a larger and more diversi-
fied dataset to investigate the proposed pipeline more
thoroughly. In addition, the robustness of the proposed
framework to inter-observer and intra-observer variability
in annotation of the ground-truth data will be evaluated
using the markings of several radiologists on MP-MRI
as well as markings of the same radiologist performed
twice on the same dataset with a sufficient time interval
(e.g., 3 weeks).
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In recent years, deep neural networks have demon-
strated effectiveness in performing various vision tasks
including medical image analysis [40]. For instance, a
method proposed by Zhu et al. [41] showed that latent
high-level features learned by a Stacked Auto-Encoder
model can be added to the conventional handcrafted
features to achieve better prostate cancer detection per-
formance. As a next step to the proposed method
in this paper, we will incorporate deep convolutional
neural networks (CNNs) into a computer-aided prostate
cancer detection framework where CNNs-driven fea-
tures are combined with conventional radiomic features
for improved detection of prostate cancer. This would
enable the utilization of both hand-crafted features, which
have been designed to capture specific characteristics
of images, and intrinsic features extracted automatically
based on the property of a given training dataset leading
to improved performance.

Conclusions

In this paper, we introduced a novel framework for auto-
matic detection of prostate cancer via a multi-resolution
radiomics feature model pipeline which extracts and
exploits comprehensive sets of features from multiple
modalities in MP-MRI. The proposed framework lever-
ages the full set of voxel-level quantitative radiomic
features and incorporates region-level features to better
characterize and detect tumour regions. A radiomics-
driven conditional random field is introduced in the last
stage of the pipeline to enforce relative ADC values by
incorporating spatial and radiomics feature relationships
between voxels to improve detection results. The con-
ditional random field framework also enforces the con-
nectednes of cancerous regions in prostate and hence,
better representing the actual cancerous tissue pheno-
type. A unique advantage of the proposed framework
is the flexibility to optimize for different performance
metrics of specificity, sensitivity, or area under the ROC
curve to fit the targeted clinical procedure. The proposed
framework shows promise as a computer-aided diagno-
sis tool for accurate and consistent diagnosis of prostate
cancer with a great potential for image-guided treatment
procedures.
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