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Introduction
Chronic rhinosinusitis (CRS) is a prevalent chronic 
inflammatory condition of the upper respiratory tract 
that impacts individuals across all age demograph-
ics. The estimated prevalence rates of the condition 
are reported to be 12.3% in the United States, 10.9% in 
Europe, and 13% in China [1]. In clinical medicine, based 
on its association with nasal polyps CRS is classified 
into two categories: chronic rhinosinusitis without nasal 
polyps (CRSsNP) and chronic rhinosinusitis with nasal 
polyps (CRSwNP). However, this clinical categorization 
is no longer sufficient to address the growing complex-
ity of clinical requirements. Particularly, the proposal of 
the “endotype” concept has emerged in light of the dis-
closure of the physiopathological mechanisms underly-
ing CRS. This concept pertains to a subtype of disease 
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Abstract
Accurate preoperative differentiation of the chronic rhinosinusitis (CRS) endotype between eosinophilic CRS 
(eCRS) and non-eosinophilic CRS (non-eCRS) is an important topic in predicting postoperative outcomes and 
administering personalized treatment. To this end, we have constructed a sinus CT dataset, which comprises CT 
scan data and pathological biopsy results from 192 patients of chronic rhinosinusitis with nasal polyps (CRSwNP), 
treated at the Second Affiliated Hospital of Shantou University Medical College between 2020 and 2022. To 
differentiate CRSwNP endotype on preoperative CT and improve efficiency at the same time, we developed a 
multi-view fusion model that contains a mini-architecture with each network of 10 layers by modifying the deep 
residual neural network. The proposed model is trained on a training set and evaluated on a test set. The multi-
view deep learning fusion model achieved the area under the receiver-operating characteristics curve (AUC) of 
0.991, accuracy of 0.965 and F1-Score of 0.970 in test set. We compared the performance of the mini-architecture 
with other lightweight networks on the same Sinus CT dataset. The experimental results demonstrate that the 
developed ResMini architecture contribute to competitive CRSwNP endotype identification modeling in terms of 
accuracy and parameter number.
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that is characterized by functional and pathology attri-
butes, which are determined by cellular, molecular, and 
immunological systems [2]. At present, there is a lack 
of standardized classification system for CRS endotype. 
Both domestic and international clinical guidelines com-
monly categorize it into two endotypes: eosinophilic 
CRS (eCRS) and non-eosinophilic CRS (non-eCRS). This 
classification is based on the predominant inflamma-
tory cell types observed in histopathological analysis [3]. 
In the field of clinical practice, it is observed that vari-
ous endotypes exhibit distinct diagnostic and treatment 
approaches [4]. Functional endoscopic sinus surgery 
(FESS), which prioritizes the preservation of mucosal 
tissue, is considered more appropriate for cases with 
non-eCRS. However, for eCRS cases characterized by a 
significant inflammatory burden, achieving favorable 
outcomes with FESS poses challenges [5]. It highlights 
the need of accurately diagnosing the endotype of CRS to 
facilitate the development of personalized and targeted 
treatment approaches.

Currently, the conventional practice for detecting 
endotype primarily relies on pathologic biopsy, which is 
commonly regarded as the benchmark method. How-
ever, this approach is associated with certain drawbacks: 
(1) The procedure is considered invasive in nature. (2) 
Its capability is limited to acquiring information solely 
pertaining to inflammation in localized tissues, thereby 
resulting in a certain degree of misdiagnosis. (3) The 
procedure is exclusively applicable to patients’ under-
going surgery and can only be performed post-surgery, 
rendering it incapable of determining inflammation and 
ascertaining the endotype during the surgical and peri-
operative phases. Hence, the primary concern in the 
clinical domain of CRS precision diagnosis and treatment 
revolves around the accurate identification of the endo-
type of CRS prior to surgical intervention. The utilization 
of sinus computed tomography (CT) images is essential 
in objectively evaluating the severity of CRS patients, 
monitoring the effectiveness of treatment, and develop-
ing personalized and accurate surgical approaches prior 
to surgery. In practice, sinus CT is mainly used to evalu-
ate eCRS and non-eCRS through LM score and GOSS 
score, where olfactory clefts (OC), posterior ethmoid 
(PE), ethmoid sinus/maxillary sinus (E/M) and ethmoid 
osteitis index are commonly used indicators, which 
are all obtained from CT images of the sinuses through 
manual interpretation. For patients with eCRS, CT find-
ings predominantly indicate bilateral involvement of the 
anterior and posterior sigmoid sinuses, while non-eCRS 
typically exhibits predominant involvement of the ante-
rior sigmoid sinus (Fig. 1). The evaluation systems most 
frequently utilized in sinus CT image analysis are the 
Lund-Mackay (LM) scoring system and the global oste-
itis scoring scale (GOSS) osteitis scoring system. Several 

researchers have employed the LM scoring system to 
forecast the inherent nature of CRS. Their findings indi-
cate that the LM scoring system scores of patients with 
eCRS were notably higher compared to those patients 
with non-eCRS. Furthermore, the combination of an 
OC score greater than 1 and a PE score greater than 1 
demonstrated the highest level of accuracy in predicting 
eCRS [6, 7]. Meng et al. employed the ratio of ethmoidal/
maxillary sinus scores (E/M) ratio from the LM scoring 
system to assess the variability between eCRS and non-
eCRS. The findings indicated that a score ratio of 2.0 and 
particularly 2.59 gave a high level of predicted accuracy 
[8]. The utilization of the GOSS osteitis scoring system 
was employed to predict the endotype of CRS. The find-
ings of this study indicated that the ethmoidal osteitis 
score could serve as a reliable assessment metric for dis-
tinguishing between eCRS and non-eCRS. Specifically, 
when the score surpasses 4.5, eCRS can be preliminarily 
diagnosed through clinical means [9]. Furthermore, Zhu 
et al. have recently employed sinus CT imaging radiomics 
as a means to forecast eCRSwNP, achieving a commend-
able accuracy rate of 77.6% [10]. Nevertheless, there exist 
several limitations in the aforementioned evaluation 
techniques: (1) The LM scoring system, the GOSS osteitis 
scoring system, and the sinus CT imaging histology all 
involve manual customization for the extraction of image 
features. However, this manual approach introduces 
subjective factors that hinder the development of accu-
rate prediction models. As a result, these models have 
remained in shallow feature learning research stage of the 
traditional machine learning, leading to suboptimal over-
all prediction performance. (2) The prediction and assess-
ment methods discussed in this study lack prospective 
external data validation, which poses challenges in deter-
mining their clinical application value and hampers their 
widespread adoption in clinical settings. Additionally, the 
level of data refinement in these methods is relatively low, 
as they primarily rely on visual and quantitative analysis 
at a macroscopic level. Consequently, the identification of 
numerous potential microscopic image features remains 
challenging. Hence, the task of overcoming the limita-
tions of superficial macroscopic observations and achiev-
ing intelligent and accurate prediction of the endotype of 
CRS has emerged as a fundamental scientific challenge 
that requires resolution in clinical settings.

Sinus CT images have a multitude of intricate micro-
scopic features that are high-dimensional in nature. 
These features have the capacity to unveil underly-
ing pathophysiological information embedded within 
the images. The robust feature extraction and screen-
ing capabilities of deep learning technology enable it 
to automatically capture and merge important picture 
features within complicated images that possess micro-
scopic high-throughput and multi-channel data. Wu 
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et al. retrospectively collected chest CT images from 
495 patients in three hospitals in China. Based on deep 
learning methods, they proposed a multi-view image 
pneumonia diagnosis model using chest CT images 
[11]. However, there are limited research findings on the 
prediction of CRS intrinsic types based on nasal sinus 
CT images using deep learning techniques. Hua et al. 
employed U-net and other neural networks to construct 
a predictive model for CRS intrinsic types based on nasal 
sinus CT images [12]. Although achieving favorable accu-
racies 76.2% and 85.3% in predicting both image intrinsic 
type labels and patient intrinsic type labels, their study 
was constrained by the depth of the U-net neural net-
work and the width of single-channel data, relying solely 
on axial plane nasal sinus CT images. Such limitations 
may have resulted in lower accuracy in image annotation 
and lacked validation with prospective data, thus hinder-
ing clinical applicability. Du et al. employed ResNet-18 to 
distinguish and predict the intrinsic types of CRSwNP, 
achieving a high AUC value on the test set [13]. How-
ever, their study did not fully utilize the information from 

different sections of CT scans from the same patient, 
potentially leading to information wastage. The backbone 
networks for classification, like ResNet [14], demonstrate 
exceptional performance across diverse huge datas-
ets. However, they encounter drawbacks in real medical 
translational applications due to an excessive number 
of parameters and duplicated network structure. In 
response to the aforementioned scenario, we have made 
enhancements to the ResNet feature extraction module. 
In practice, we introduced a novel network architecture 
called ResNet mini architecture, which was employed for 
the purpose of extracting features from three-orientation 
CT images (axial, coronal, and sagittal). These features 
are utilized in the diagnosis of eosinophilic and non-
eosinophilic CRSwNP.

Materials and methods
Datasets
This study received approval from the Institutional 
Review Board of the Second Affiliated Hospital of Shan-
tou University Medical College. The members of the 

Fig. 1 Computed tomography sections in axial (a and b) and coronal (b and d) planes of eCRS (a and c) and non-eCRS (b and d). eCRS exhibits predomi-
nant involvement in bilateral anterior and posterior ethmoid sinuses, whereas non-eCRS predominantly affects the anterior ethmoid sinuses
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institutional review board granted an exemption for 
obtaining written consent for the right-to-know and pro-
vided approval for the retrospective study.

To establish a high-quality biospecimen bank of 
CRSwNP, we recruited patients with CRSwNP from the 
Second Affiliated Hospital of Shantou University Medical 
College. The inclusion criteria [15] were as follows: meet-
ing the diagnostic criteria for CRSwNP as defined by 
previous research, no history of previous nasal surgery, 
normal liver and renal function, and no use of oral gluco-
corticoid medication or macrolide antimicrobials within 
1 month prior to treatment. The exclusion criteria were 
as follows: being under 18 years old, having fungal sinus-
itis, posterior nostril polyps, nasal and sinus tumors, pri-
mary ciliary dyskinesia, cystic fibrosis, no sinus CT scan, 
and no previous sinus surgical treatment.

A total of 192 patients diagnosed with CRSwNP were 
included in this retrospective study. We collected sinus 
CT images from these patients, comprising three views: 
axial, coronal, and sagittal. In total, there were 21,108 
images obtained, which were further categorized into two 
groups: eCRS (72 patients, 9,062 images) and non-eCRS 
(120 patients, 13,203 images). The image labels were 
assigned based on postoperative pathological endotypes. 
The dataset was partitioned into training and testing sets 
with an 4:1 ratio. Specifically, the training set encom-
passed 5628 data groups, which amounted to 16,884 CT 
images, while the testing set comprised 1408 data groups, 
totaling 4224 CT images. Each data group encapsulated 
three images: axial, coronal, and sagittal planes. Each 
image in the dataset possesses a certain resolution of 
224 × 224. Furthermore, all images inside the dataset are 

represented in grayscale, with pixel intensities ranging 
from 0 to 255. Ultimately, the dataset is employed for the 
purposes of training and testing deep learning networks.

Network architecture
Multi-view fusion deep learning architecture
In this study, we selected three-view pictures of sinus 
CT scans as the input for our model. The research con-
ducted on the identification of lung nodules from chest 
CT images has demonstrated that deep learning mod-
els with a multi-view fusion technique exhibit superior 
performance compared to single-channel models [16]. 
Compared with the single channel model, the multi-view 
model is superior to the single channel model from the 
information point of view, because it uses more image 
information. The advantage of multi-view fusion model 
is to make full use of the information from different per-
spectives of CT scan and reduce the waste of informa-
tion. Motivated by this, we employed CT images of the 
sinus region in axial, coronal, and sagittal planes as inputs 
to a deep neural network. This approach aims to enhance 
the diagnostic capabilities for identifying the endotype of 
CRSwNP by using information from many channels in a 
more complete and precise manner.

To determine the endotype of CRSwNP, a multi-view 
fusion network was devised utilizing a convolutional 
neural network, as depicted in Fig.  2. The network is 
comprised of four components, namely the input layer, 
feature extraction layer, feature fusion layer, and classifi-
cation output layer. The set of axial, coronal, and sagittal 
CT images were partitioned into three channels for input 
into the network. The feature extraction component of 

Fig. 2 The main framework of multi-view deep learning fusion model. Three images in the axial, coronal, and sagittal planes are utilized as input. Subse-
quently, the output probability is mapped by a Dense layer after undergoing feature extraction and feature fusion operations
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the network was developed by adapting the ResNet-18 
architecture, a residual network that incorporates a resid-
ual module. This module offers improved computational 
efficiency and parameter reduction without compromis-
ing the network’s accuracy. The three branch networks 
generate their respective feature maps, which are com-
bined using the concatenate function and fed into the 
global average pooling layer to concentrate the features. 
These features are then passed into the fully connected 
layer, which ultimately produces the probability values 
for the different categories of CRSwNP endotype.

ResMini block
ResNet has demonstrated exceptional performance as a 
backbone network in image classification tasks, particu-
larly on extensive datasets like ImageNet [17]. However, 
in specific contexts where efficiency is crucial for medi-
cal image classification tasks, such as disease screening or 
resource-constrained scenarios like embedded devices, 
ResNet may exhibit redundancy in terms of model size, 
with parameters exceeding the magnitude of ten million. 
In this article, we develop a modified ResNet architec-
ture, in which the feature extraction module ResMini [18] 
is also referred to as the Residual Block, as depicted in 
Fig.  2. The ResMini architecture is specifically designed 
to have a depth of 10 layers, in contrast to ResNet-18 
which has 18 layers. This deliberate design choice results 
in a significant reduction in network parameters while 
simultaneously enhancing overall performance. The left 
side of Fig.  3 illustrates the architectural composition 
of ResMini. Initially, the input undergoes processing 
through a CBA module, consisting of Convolution2D, 
Batch normalization, and Rectified Linear Unit (ReLU) 
activation function [19, 20]. Subsequently, the output is 
directed to a Max Pooling layer, immediately followed by 
the integration of four residual structures. The outputs of 
the residual modules from each branch are concatenated 
and subsequently fed into an Average Pooling layer and a 
Dense layer. Finally, the resulting output is sent via a Soft-
max function. The quantity of filters within the convolu-
tional layers of the residual architecture increases twofold 
with the progression of the network’s depth.

In the CBA module, the kernel size of the convolutional 
layer is determined to be 3 × 3, with a stride of 1 and pad-
ding of 3. Additionally, the Max Pooling layer is config-
ured with a Kernel size of 3 × 3, a stride of 2, and padding 
of 1. Following the convolutional layer, the utilization of 
Batch Normalization is employed to enhance the rate of 
convergence of the network, while the activation func-
tion of choice is Rectified Linear Unit (ReLU). The activa-
tion function employed in this context is ReLU.

The residual structure is depicted on the right side of 
Fig. 3. It consists of two branches: one branch comprises 
two CBA modules, while the other branch directly passes 

through a single CBA module. Ultimately, these two 
branches converge and produce the final output.

Image processing and parameter setting
To enhance the model’s generalization capability, we 
conducted data augmentation such as panning, flipping, 
rotating, scaling, and cropping, as well as feature nor-
malization on the dataset. Ultimately, the deep learn-
ing network was trained using the designated training 
set, and subsequently the network’s performance was 
assessed using the designated test set. The network mod-
el’s parameters update during the training phase through 
Adam optimizer [21]. The Cross Entropy Loss [22] was 
employed as the loss function. The learning rate was 
established at 1 × 10− 5, and a batch size of 20 was utilized. 
The number of iterations for the dataset, often known as 
the epoch, was set at 20.

Performance evaluation
The area under the ROC Curve (AUC) [23], accuracy, 
recall, precision, F1-Score and confusion matrix were 
used to evaluate classification performance.

Experimental platform
This study conducts the implementation of a multi-view 
fusion model using Python (version 3.7.16) and Ten-
sorFlow (version 2.5.0). The experimental platform is a 
Lenovo server equipped with 32G of physical memory. 
The CPU is the Intel(R) Xeon(R) Silver 4210R CPU @ 
2.40 GHz, while the graphics card model is the NVIDIA 
GeForce RTX 3080 Ti (12G). The operating system is the 
Ubuntu 18.04.6 LTS.

Results
Performance of the classification model
The figures depicted in Fig.  4 illustrate the Loss and 
Accuracy curves of our model over Epoch in training and 
testing. The training Loss of the multi-view fusion clas-
sification model exhibits a decreasing trend in the train-
ing process, ultimately converging after 20 iterations. The 
model achieves a maximum accuracy of 96.54% on the 
test set at Epoch 14, so satisfying the inherent diagnos-
tic accuracy criteria of the CRSwNP. Furthermore, the 
receiver operating characteristic (ROC) curve of the clas-
sifier is depicted in Fig. 5. It is worth noting that the area 
under the curve (AUC) attains a value of 0.991, providing 
evidence of the classifier’s commendable predictive capa-
bilities. The Fig. 5 also illustrates the confusion matrix of 
the classifier’s classification results on the test set.

Comparison with other models
A comparison experiment was designed to further assess 
the proposed model. We substituted the Residual Block 
depicted in Fig.  2 with ResNet-18 [14], LeNet-5 [24], 
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ShuffleNet v1 [25], and SqueezeNet [26] as shown in 
Fig. 6. In this context, we have retained the four feature 
extraction layers of the convolutional neural network, 
which includes components such as convolutional layer, 

pooling layer and batch normalization, and removed the 
classification layers, such as the fully connected layer. The 
feature extraction layer is used to generate a feature map 
containing the image features. Table  1 lists a summary 

Fig. 4 Loss and accuracy curves of our model over epochs in training and test. (a) Plot of multi-view fusion deep learning model loss function with 
number of iterations. (b) Plots of model accuracy as a function of the number of iterations in the training and test sets

 

Fig. 3 ResMini architecture
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Fig. 6 Comparison of the classification performance and network parameters of ResMini, ResNet-18 [13], LeNet-5 [24], ShuffleNet v1 [25], and SqueezeNet 
[26] on the sinus CT dataset. Please note that our Resmini can achieve a better balance between accuracy and parameter size

 

Fig. 5 ROC curve and Confusion matrix of multi-view fusion model. (a) ROC curve, the area under curve is 0.991. (b) Confusion matrix of multi-view fu-
sion model
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of the test results obtained from the five networks when 
they were applied to the sinus CT test set. To minimize 
the effects of randomness, we employed 5-fold cross-val-
idation by dividing the entire dataset into 5 equally sized 
segments. Subsequently, one segment was designated 
as the test set, while the remaining four segments were 
used for training. This process was repeated 5 times until 
each segment had been utilized as the test set once, with 
the others employed for training. The final evaluation 
metric value of the model was determined by averaging 
the evaluation metric values of the five iterations on the 
test data. The results indicate that ResMini exhibited a 
drop in accuracy of 2.5% when compared to SqueezeNet. 
However, the classification accuracy of 96.5% obtained 
by ResMini is a satisfactory outcome. Additionally, when 
compared to ResNet-18, ResMini experienced a decrease 
of accuracy 0.6%, which can be deemed as an acceptable 
outcome for our specific task. ResMini achieved a recall 
of 0.965 and a precision of 0.975 in the test set. In differ-
entiating between types of intrinsic medical tasks, where 
each type is equally important, the F1-Score, a harmonic 
mean of precision and recall, serves as a comprehensive 
metric that accounts for both precision and recall. It is 
particularly applicable in scenarios with class imbalance. 
ResMini’s F1-Score reached 0.970, surpassing the other 
four models, indicating its superior performance in mini-
mizing both false positives and false negatives. Regard-
ing the AUC, ResMini is almost on par with SqueezeNet, 
achieving an impressive 0.991. A high AUC value gener-
ally indicates that the model performs exceptionally well 
in predicting positive and negative classes, offering high 
reliability and practicality, especially in handling complex 
or imbalanced datasets. Significantly, ResMini exhibits a 
notably lower parameter of 236,552, which is at least ten 
times smaller when compared to ResNet, SqueezeNet, 
and ShuffleNet v1. In similar studies, Du et al. utilized the 
ResNet-18 network to differentiate intrinsic features, but 
the study did not fully leverage the multi-angle CT scan 
data from the same patient, possibly leading to unde-
rutilization of information [13]. Our study conducted 
comparative experiments using a multi-view ResNet-18 
network. The results demonstrate that ResMini main-
tains a similar accuracy to ResNet-18, while surpass-
ing it in terms of precision and F1-Score. Moreover, the 
parameter count of the ResMini model is reduced by over 

90% compared to ResNet-18, indicating that the original 
ResNet-18 network may have structural redundancies in 
this application scenario, necessitating optimization of 
the network architecture to learn more effective features.

Discussion
The identification of CRSwNP endotyhpe is an essential 
issue in clinical medicine. Deep neural networks have 
significant potential to aid rhinologists in determin-
ing the endotype of CRSwNP. In conclusion, the imple-
mentation of this approach has the potential to alleviate 
the burden on rhinologists, enhance diagnostic efficacy, 
and offer appropriate and refined therapeutic treatment 
approaches for individuals with CRS.

This work also exhibits some shortcomings. Initially, 
data was exclusively obtained from a single hospital, and 
a standardized specialist database for CRSwNP was built. 
Further work is needed to expand the scope of the study 
by incorporating CT images of CRSwNP patients from 
various hospitals in China or perhaps globally to validate 
the model. It is imperative to gather extensive datasets 
from multiple centers in a prospective manner to effec-
tively train and validate the artificial intelligence model.

Further advancements in artificial intelligence algo-
rithms should be pursued to enhance the efficiency, con-
venience, and accuracy in diagnosing intrinsic form of 
CRSwNP. Furthermore, to address the complex nature of 
image data features in sinus CT, this study would develop 
a multi-view feature fusion network that incorporates an 
attention mechanism, so as to achieve adaptive focusing 
and fusion of key features across multiple views.

Conclusions
This paper introduces a novel approach, wherein a 
multi-view deep learning fusion classification model is 
proposed for the purpose of diagnosing the endotype 
of CRSwNP using sinus CT scans. The multi-view per-
spective model effectively utilizes information by incor-
porating sinus CT axial, coronal, and sagittal image data, 
resulting in improved performance. From a computing 
resources standpoint, the model aims to minimize the 
number of parameters while maintaining a satisfactory 
level of accuracy. This approach effectively conserves 
computer resources and makes it ideal for integration 
into medical diagnostic and treatment equipment.

Table 1 Evaluation metrics performance across models on dataset
Network ResMini ResNet-18 LeNet-5 ShuffleNet v1 SqueezeNet
Accuracy 96.5% 97.1% 90.6% 98.6% 99.0%
Recall 0.965 0.973 0.923 0.976 0.988
Precision 0.975 0.949 0.965 0.947 0.937
F1-Score 0.970 0.961 0.944 0.961 0.962
AUC 0.991 0.993 0.962 0.967 0.992
Total parameters (M) 0.24 33.54 0.18 2.77 2.21
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