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Abstract 

Digital dental technology covers oral cone-beam computed tomography (CBCT) image processing and low-dose 
CBCT dental applications. A low-dose CBCT image enhancement method based on image fusion is proposed 
to address the need for subzygomatic small screw insertion. Specifically, firstly, a sharpening correction module is pro-
posed, where the CBCT image is sharpened to compensate for the loss of details in the underexposed/over-exposed 
region. Secondly, a visibility restoration module based on type II fuzzy sets is designed, and a contrast enhancement 
module using curve transformation is designed. In addition to this, we propose a perceptual fusion module that fuses 
visibility and contrast of oral CBCT images. As a result, the problems of overexposure/underexposure, low visibility, 
and low contrast that occur in oral CBCT images can be effectively addressed with consistent interpretability. The 
proposed algorithm was analyzed in comparison experiments with a variety of algorithms, as well as ablation experi-
ments. After analysis, compared with advanced enhancement algorithms, this algorithm achieved excellent results 
in low-dose CBCT enhancement and effective observation of subzygomatic small screw implantation. Compared 
with the best performing method, the evaluation metric is 0.07–2 higher on both datasets. The project can be found 
at: https://​github.​com/​sunpe​ipei2​024/​low-​dose-​CBCT.
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Introduction
Low-dose CBCT oral image enhancement [1–4] is 
important in the field of dentistry and dentistry because 
it uses diagnostic examinations performed with low 
X-ray radiation doses to reduce the radiation expo-
sure to the human body while improving the quality of 

the CBCT oral images and to provide a more accurate 
diagnosis and treatment plan for the patient’s oral dis-
ease. The following are some of the important implica-
tions of low-dose CBCT oral image enhancement: (1) 
Improvement of image quality [5]: low-dose CBCT is a 
technique for obtaining structural images of the oral cav-
ity by X-ray scanning. By enhancing the images, the con-
trast and clarity of the images can be improved, helping 
the physician to better visualize oral structures, identify 
details and reduce noise. (2) Improve diagnostic accuracy 
[6]: oral image enhancement can help doctors diagnose 
problems with teeth and oral structures more accurately. 
(3) Reduced radiation dose [7]: An important advantage 
of low-dose CBCT is that it reduces the dose of X-ray 
radiation to which the patient is exposed. With image 
enhancement techniques, high quality images can be 
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obtained at low radiation doses, thus reducing the poten-
tial risk of radiation to the patient.

CBCT is an important part of oral radiography and is 
now widely utilized in dental clinics due to its 3D high 
resolution at low cost [8]. For example, temporoman-
dibular joint disorders, orthodontic treatment, and com-
plex root canal treatment [9]. In orthodontic treatment, 
CBCT can provide accurate images of the hard tissues 
at the zygomatic alveolar ridge and infrazygomatic crest 
[10], in addition, as the only diagnostic imaging tech-
nique, it can roughly determine the structure and density 
of the jawbone, evaluate the anatomy of the cortical and 
cancellous bone, and give us a reference to add an assis-
tive device in moving the posterior teeth [11]. However, 
CBCT is genotoxic and cytotoxic to oral mucosal cells 
not only in children but also in adults and may increase 
the shedding of human oral mucosal cells [12]. The risk 
of exposure to dental CBCT rays increases with dose. 
This radiation exposure may lead to tissue damage, espe-
cially to tissues of the head and neck [13]. Therefore, den-
tists should use CBCT scans with caution to minimize 
the radiation dose received by the patient and use lower 
dose scanning parameters whenever possible. In addi-
tion, patients should be informed of the potential risks 
and an adequate risk and benefit assessment should be 
performed before undergoing a CBCT scan [14]. CBCT 
images with stainless steel crowns implants or restora-
tions will show streaks and shadows due to its imaging 

properties, which reduces the contrast of the image, and 
low-quality CBCT also introduces an additional error at 
the alignment stage, leading to a reduction in accuracy.

Bone class II high angle patients have overdeveloped 
posterior alveolar bone, often need to simulate Lefort 
type I surgery to depress the maxillary posterior teeth, 
and sometimes need the maximum support to retract 
the anterior teeth. Miniscrews meet these two require-
ments, the requirements of patient compliance is low, 
and the cost is less. However, the bone cortex of high-
angle patients is thin, the alveolar bone thickness is rela-
tively low, the infrazygomatic crest floor is low, and the 
miniscrews are easily loosened and dislodged. A large 
number of studies at home and abroad have been built on 
the study of CBCT, but because all kinds of miniscrews 
are basically made of stainless steel, it will have the prob-
lem of accuracy for CBCT images. In this paper, an in-
depth study is conducted to improve the quality of CBCT 
images and to solve the problem of radiologic accuracy 
due to the low quality of CBCT images. Figure 1 shows 
CBCT imaging and the proposed method’s enhancement 
effect on low-dose CBCT images.

Each method has its advantages and disadvan-
tages when dealing with low-dose CBCT oral image 
enhancement. For traditional methods, many articles 
only consider visibility or noise, but we believe that a 
combination of degradation factors is needed to make 
enhancement of low-dose CBCT images, which may 

Fig. 1  CBCT imaging and low-dose CBCT image enhancement effects. CBCT imaging does a great job of photographing the oral cavity. The 
proposed method proposes a solution to the problem of oral low-dose CBCT images. As shown in (b), the proposed method can well solve 
the problem of oral low-dose CBCT images



Page 3 of 12Sun et al. BMC Medical Imaging          (2024) 24:114 	

be less practical for practical clinical applications. For 
deep learning methods, many articles usually require 
validation in the dental field. In addition to this, the 
complexity and black-box nature of deep learning mod-
els may raise some concerns in the clinical setting.

In this study, we take full advantage of mathematical 
transformations to address the problem of degradation 
in the quality of low-dose CBCT oral images by using 
an integrated approach to highlight the representa-
tion of different tasks. Unlike previous approaches that 
focus only on low visibility, we extensively consider the 
causes of degradation in low-dose CBCT oral images. 
First, we propose a sharpness enhancement method 
based on mathematical transformations to compen-
sate for the loss of details in the exposed region. The 
method subtly enhances the sharpness of the image 
through mathematical transformations, thus improv-
ing the overall quality. Secondly, we designed a visibil-
ity restoration module based on type II fuzzy sets to 
deal with the problem of low-dose CBCT oral images 
more comprehensively. Meanwhile, we introduce a con-
trast enhancement module using curve transformation, 
which helps to improve the contrast in the image and 
makes the key features more prominent. In addition to 
this, we innovatively propose a perceptual fusion mod-
ule that further improves oral CBCT images by fusing 
the information of visibility and contrast. This approach 
has rarely been studied in the field of low-dose CBCT 
oral image enhancement and provides new ideas and 
ways to solve related problems. It is worth mention-
ing that since our method is based on a non-physical 
model, it exhibits exciting characteristics in the repre-
sentation of biological visual properties. Meanwhile, 
our method is highly interpretable, which enables us to 
clearly understand the contribution of each module to 
image enhancement, providing strong support for the 
tuning and improvement of the method. The main con-
tributions of this paper are as follows:

•	 To solve the problem of detail loss in the under-
exposed/ overexposed regions of low-dose CBCT 
oral images, we propose a sharpening enhancement 
method based on mathematical transforms.

•	 To solve the problem of visibility and contrast deg-
radation in low-dose CBCT oral images, we design 
a visibility restoration module based on type II fuzzy 
sets, and we design a contrast enhancement module 
using curve transformation.

•	 We propose a perceptual fusion strategy that simul-
taneously considers two images, fuses the visibility 
restored and contrast enhanced CBCT images, and 
considers both pixel intensity and global gradient 
changes in both images.

Related works
In recent years, research for low-dose CBCT image 
enhancement has made significant progress in several 
areas. These researches mainly focus on two directions: 
traditional methods and deep learning methods. The 
studies of traditional methods [15–20] mainly rely on 
classical image processing techniques and mathemati-
cal operations to improve the quality and sharpness of 
CBCT images. These methods include various filtering 
techniques, edge enhancement, histogram equalization, 
etc. By pre-processing, denoising and enhancing the 
images, the traditional methods try to improve the visu-
alization of CBCT images. However, traditional methods 
may suffer from performance limitations when dealing 
with complex problems, especially when dealing with 
images with complex structures and noise. On the other 
hand, deep learning methods [21–23] show great poten-
tial in CBCT image enhancement. These methods uti-
lize deep learning models such as deep neural networks 
and convolutional neural networks to achieve automatic 
image restoration and enhancement by learning features 
and patterns from large amounts of data. Deep learning 
methods are able to learn more complex and abstract fea-
tures from large amounts of data, and therefore usually 
achieve better results when dealing with complex prob-
lems in CBCT images.

Overall, there are advantages and disadvantages to both 
traditional and deep learning methods. Traditional meth-
ods, which rely on feature extraction designed by engi-
neers and rules formulated by hand, have the advantage 
of being highly interpretable and computationally fast, 
but may be limited when dealing with complex prob-
lems. Deep learning methods [24–26], on the other hand, 
are able to learn complex feature representations from 
a large amount of data and have stronger generalization 
capabilities, but require a large amount of labeled data 
and computational resources. Currently, many image 
enhancement applications have been proposed, show-
ing the potential role of stochastic resonance [27–31], 
underwater image enhancement [32], and dehazing [33] 
in enhancing contrast. In this section, we will introduce 
the application of the two methods on oral CBCT image 
enhancement, respectively.

Traditional methods
Many of the techniques in traditional methods are 
based on mathematical operations. For example, com-
mon filters (e.g., median filters, Gaussian filters) can 
reduce noise in an image by averaging or weighted 
averaging local pixel values over the image. Hart et  al. 
[15] determined the optimal parameters in the variable 
kernel deformation image alignment of CBCT images 
to improve the accuracy and convergence of on-line 
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adaptive radiotherapy. Churchill et  al. [17] combined 
image processing techniques and statistical reconstruc-
tion by using initial filtered inverse projection recon-
struction to create binary edge masks, which were then 
used for weighted regularized reconstruction. Chen et al. 
[18] proposed a new physical model-based approach to 
enhance the contrast of CT images. The input image is 
converted into a tissue parameter map using the rela-
tionship between tissue parameters. By using a classical 
parameter fitting model, a partially attenuated image with 
enhanced image contrast can be computed. Soltanian-
Zadeh et al. [19] utilized the frequency characteristics of 
artifacts to identify and correct artifacts. Villain et al. [20] 
enhanced CT images by applying a semi-quadratic edge-
preserving image restoration (or inverse convolution). 
This method can be used with almost any CT scanner as 
long as the overall point spread function can be roughly 
estimated. These methods are usually less adaptable to 
different image conditions and specific problems, and 
may not be able to accommodate a wide range of dental 
images. While traditional methods do not require much 
investment in training data, they may suffer from perfor-
mance limitations when dealing with complex problems. 
The performance of these methods depends on the fea-
ture extraction designed by engineers and the rules for-
mulated manually, and thus may not be well adapted to 
the complex structure and noise in the image. Compared 
to deep learning methods, traditional methods are usu-
ally more interpretable and computationally efficient, 
but may exhibit limitations when dealing with complex 
problems.

Deep learning methods
Deep learning methods have achieved excellent perfor-
mance in image enhancement tasks to capture complex 
features and textures in images. Deep learning methods 
are highly adaptable and can be used for different types of 
dental images and various problems. Wang et al. [34] per-
formed multiclass segmentation of jaws, teeth and back-
ground from CBCT scans. Fully automated segmentation 
method for simultaneous segmentation of two anatomi-
cal structures in CBCT scans. Kida et  al. [35] proposed 
a method using deep neural network CBCT images in 
response to shorter time and fewer exposures for acquir-
ing CBCT images. Madesta et  al. [36] used a convolu-
tional neural network architecture with residual dense 
networks for interpreting inter-motor variability of tar-
gets. Griner et al. [37] developed a deep learning method 
for scattering-induced artifacts that can significantly 
degrade image quality to empirically correct the most 
commonly observed artifacts in CBCT-based images. 
Deep learning methods typically require large amounts of 
label data for training, which can be challenging for some 

applications. Deep learning models are usually black-box 
and it is difficult to explain their inner workings. Deep 
learning models usually require large amounts of labeled 
data for training, especially in tasks that require learning 
complex features and patterns. For example, in an image 
enhancement task, if a deep learning model is to be 
trained to improve the quality of low-dose CBCT images, 
a large amount of paired data with corresponding high-
quality images is required. Collecting and labeling these 
data may require significant time and human resources 
and may be impractical for some applications.

Proposed method
In this section, we illustrate the proposed method, which 
consists of four basic components. These four compo-
nents include sharpening correction, visibility restora-
tion, contrast enhancement and image fusion modules. 
The overall flowchart of the proposed method is shown 
in Fig. 2.

Sharpening correction module
First, we input the CBCT image and sharpen the input 
oral CBCT image, whose main function is to enhance 
the edges and details of the image so that the image looks 
clearer and sharper. We define the processing result of 
the sharpened image Ẑ by the following equation:

in Eq. (1), G ∗ I is defined as the Gaussian filtering result 
of I . N {·} is defined as the normalization operator. Oral 
CBCT images are sharpened to make the CBCT image 
clearer and sharper. It helps to highlight the differences 
between the boundaries and regions in the image. Sharp-
ening the image can make the edges of the objects clearer 
and more visible, thus improving the visual quality of the 
image.

Visibility recovery module
In the visibility restoration module, we work on the visual 
clarity enhancement of CBCT images. In order to real-
ize the visual clarity recovery of CBCT images, we intro-
duce an innovative method based on type II fuzzy sets. 
Based on the theory of type II fuzzy sets, we propose a 
new upper and lower range solution to the Hamacher 
t-conorm, and employ a transform-based gamma correc-
tion technique to accomplish the enhancement of CBCT 
image visibility. Through the combined application of 
these technological tools, we aim to improve the quality 
and clarity of CBCT images to more accurately support 
relevant applications and medical diagnosis. First, the 
mean µ and standard deviation σ of the fuzzy image Ẑ(x) 
are calculated:

(1)Ẑ = (I +N {I − G ∗ I})/2,
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based on Eqs.  (2) and (3), we compute the new lower 
bound for the Hamacher t-conorm. Here, we compute 
the new upper bound û(x) by the following equation:

where α = 0.95 . The new lower limit ŵ(x) is expressed 
using the following equation:

Hamacher t-conorm is an operation used in fuzzy 
logic to merge the membership values of two fuzzy sets. 
When calculating the new Hamacher t-conorm, we need 
to ensure that the updated lower and upper bounds are 
taken into account in order to accurately reflect the rela-
tionship between the fuzzy sets. This will ensure accurate 
results when dealing with fuzzy data, thus increasing the 
reliability of mathematical and statistical applications:

Gamma correction can be used to improve the vis-
ual quality of CBCT images when they appear dull or 
unclear after processing. By remapping the pixel values 
of the input CBCT image, the sharpness and contrast 
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of the image is enhanced. Gamma correction is based 
on a nonlinear transformation of the pixel values of an 
image using a gamma function. The gamma function 
adjusts the brightness and contrast of the image so that 
dark and bright details are more prominent:

where L1(x) is the final output of the visibility restoration 
module.

Contrast enhancement module
The main goal of the contrast enhancement module is 
to improve the contrast of CBCT images. To achieve 
this goal, we first process the image using two unique 
curve transformation functions to produce an image 
that is significantly enhanced in contrast by combining 
their outputs. Next, we introduce a gamma-corrected 
stretching function that stretches the intensity of the 
image to conform to standard intervals. The key to this 
process is to effectively enhance the grayscale differ-
ences in the image through the combined application 
of different transforms and adjustments, making the 
details in the image more prominent and legible, and 
providing a more reliable basis for subsequent medical 
image analysis and diagnosis. Combining Eqs.  (8) and 
(9), we can apply the probability density function and 
the soft additive function of the standard normal distri-
bution to each pixel value of the CBCT image in order 
to realize the individual processing of the image and to 
improve the visual quality of the image and the ability 
to express information:

(7)L1(x) = max (t(x)) ·
(

t(x)

max (t(x))

)1.5·α
,

Fig. 2  Overall framework. The input CBCT image is passed through sharpening correction, visibility restoration and contrast enhancement modules 
and finally fed into the perceptual fusion module for fusion
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Then, the logarithmic image processing method using 
Eq. (10) combines the outputs of these two methods:

Finally, a gamma-controlled normalization function is 
applied via Eq. (11) in order to fully stretch the image inten-
sities to standard intervals:

The results obtained through the contrast enhancement 
module have improved contrast while maintaining bright-
ness and natural. Where g(x) is the generated contrast 
modified image, Ẑ(x) is the input contrast distorted image 
and L2(x) is the contrast stretched image by normalization. 
Where η = 0.8 is the gamma correction parameter respon-
sible for adjusting the contrast of the image.

Perceptual fusion module
In this section, we successfully obtain visibility restored 
CBCT images and contrast enhanced CBCT images. 
Unlike traditional image fusion methods, our image fusion 
method stems from two independent tasks. Therefore, we 
propose a novel fusion strategy that simultaneously consid-
ers the weight assignment of the two images. This weight 
assignment consists of two aspects: a weight based on pixel 
intensity and a weight based on global gradient. By inte-
grating the pixel-level intensity information and the gradi-
ent characteristics of the overall image, our method is able 
to capture and utilize the beneficial information generated 
by the two different tasks more comprehensively during 
the image fusion process, thus further improving the qual-
ity and information content of the synthesized image. This 
innovative weight adjustment strategy injects higher flex-
ibility and adaptability into our image fusion method, ena-
bling it to perform well in different scenarios and tasks.

Weight design based on pixel intensity
The pixel intensity based fused image F(x) as a weighted 
sum of images can be expressed as:

where W1(x) and W2(x) denote the weights of the impor-
tance of pixels L1(x) and L2(x) . Thus, W (x) gives more 

(8)g(x) = 1√
2π
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


−

�

Ẑ(x)
�2

2


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
,

(9)s(x) = log
(

1+ exp
(

Ẑ(x)
))

.

(10)l(x) =
√

f (x)+ s(x)+ f (x) ∗ s(x).

(11)L2(x) =
(

l(x)−min (l(x))

max (l(x))−min (l(x))

)η

.

(12)F(x) = W1(x)L1(x)+W2(x)L2(x),

weight to regions where the pixel intensities perform well, 
mn is denoted as the average of the pixel intensities, and 
the weight should be larger when Ln(x) is close to 1−mn , 
which can be denoted as exp

(

−(Ln(x)− (1−mn))
2
)

 . 
When processing an image, it is important to take into 
account the exposure level of the input image. This is 
because a large difference between the brightness of the 
images results in more well-exposed pixels. To account 
for this, a larger value of σN is assigned when there is a 
significant difference in the average brightness between 
images. The weights based on pixel intensity are denoted 
as:

Among them.

where N  is the number of images in a set of images. In 
Eq. (13), dark pixels are assigned a larger weight when mn 
is close to 1 and vice versa. In addition, when the average 
brightness is significantly different between images, the 
weights are assigned larger values.

Weight design based on global gradient
We observe that in regions lacking texture, images often 
have low contrast or small gradient values. Therefore, 
emphasizing only large gradient areas may not effec-
tively highlight pixels within areas with smaller gradi-
ents. Based on this understanding, we introduce a global 
gradient weighting method aimed at emphasizing global 
contrast. In images with higher contrast, the cumula-
tive histogram has smaller gradient values. Therefore, we 
need to give greater weight to pixels when they lie within 
the range of the cumulative histogram with relatively 
small gradients. In other words, we need to dynamically 
adjust the weight of each pixel based on its position and 
gradient information in the image. In areas with smaller 
gradients, we would expect the pixels to contribute more, 
as these tend to be areas of the image that lack texture. 
Therefore, we design a global gradient weighting method 
to better consider the global contrast when process-
ing images and dynamically adjust the weight of pixels 
according to the gradient distribution of the image. This 
global gradient-based weight adjustment strategy makes 
our image fusion method more intelligent and com-
prehensive, able to adapt more flexibly under different 
image characteristics and contrast conditions, and effec-
tively improve the overall image quality and information 

(13)w1,n(x) = exp

(

− (Ln(x)− (1−mn))
2

2σ 2
n

)

.

(14)σn =







1.5(mn+1 −mn) n = 1
0.75(mn+1 −mn−1) 1 < n < N
1.5(mn −mn−1) n = N

,
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transfer. The weights based on global gradient can be 
expressed by the following equation:

where ǫ is a very small positive value and Gradn(Ln(x)) 
denotes the gradient of the cumulative histogram when 
the intensity is Ln(x) . In image processing, global gradi-
ent refers to the ability to perform a more comprehensive 
analysis of a CBCT image while taking into account the 
overall characteristics of the image. While traditional 
local gradient methods focus on local variations around 
specific pixels, global gradient methods capture a wider 
range of image contextual information by considering the 
gradients of distant pixels. This approach contributes to 
a better understanding of the structure and features of 
the entire image, thus improving the analysis of CBCT 
images. To calculate the final weights for each CBCT 
image, the two weights are combined and normalized 
using a specific equation:

Using the weights obtained by Eq. (16), we can fuse the 
images according to Eq. (12).

Results
In this section, we will discuss in depth the methods used 
for evaluation to get a full picture of their performance 
benefits. We are committed to a comprehensive evalua-
tion of the proposed methods to ensure their validity and 
reliability in practical applications. To achieve this goal, 
we employ a variety of evaluation methods, including 
quantitative metrics and qualitative analysis, to assess 
the performance of the methods from different perspec-
tives. In addition to the quantitative metrics, we will also 
perform a qualitative analysis to visually assess the pro-
cessed images to visually observe the image quality, detail 
retention, and other aspects of the evaluation. This evalu-
ation method can provide intuition and help us under-
stand how the method performs in real scenes. To verify 
the effectiveness of each module, we also conducted a 
series of ablation experiments. By testing each module 
independently, we can gain insight into its impact on the 
final results and determine the performance contribution 
of each module. This step-by-step validation approach 
helps to ensure that each component of the methodol-
ogy works effectively and ultimately yields high-quality 
results. We chose MATLAB 2022a as the tool that would 
support us in performing various image processing 

(15)
w2,n(x) =

Gradn (Ln(x))
−1

N
∑

n=1

Gradn (Ln(x))
−1 + ǫ

,

(16)
Wn(x) =

w1,n(x)× w2,n(x)

N
∑

n=1

w1,n(x)× w2,n(x)+ ǫ

.

operations and experiments. The data for this article can 
be found at: https://​osf.​io/​f9r8v/.

Experiment settings
In this section, we provide a thorough description of 
the experimental setup, specifically, we applied four 
reference-free evaluation metrics to fully validate two 
reference-free image datasets. We comprehensively com-
pare nine of the most representative and state-of-the-art 
image enhancement methods. First, we used four refer-
ence-free evaluation metrics to ensure a comprehensive 
assessment of image enhancement methods. These met-
rics consider the performance of image quality, contrast, 
and detail retention to provide comprehensive informa-
tion for the experimental results. We chose two data-
sets with no reference images so that the performance 
of various image enhancement methods can be verified 
more comprehensively. It helps to evaluate the gener-
alization ability of the methods. In this experiment, we 
compare nine of the most representative and state-of-
the-art image enhancement methods. We choose these 
methods based on their wide application and sophisti-
cation in the literature to ensure that our comparison is 
representative. By using multiple evaluation metrics on 
different reference-free image datasets, we were able to 
gain a comprehensive understanding of the performance 
of each image enhancement method, providing a solid 
foundation for further analysis and conclusions. Such an 
experimental design and detailed validation process help 
to ensure our objective evaluation of the performance of 
image enhancement methods.

Compared methods
Nine image enhancement methods including CEDN [38], 
NLM [39], NNC [40], MID [41], BCD [42], GM [43], 
DCFD [44], DPRN [45], and SDCN [46] were compared 
on Test 1 and Test 2 low-dose CBCT oral miniscrew 
image datasets.

No‑reference image quality assessment metrics
No-reference image quality assessment metrics means 
that reference information is not available for predict-
ing image quality. When confronted with oral CBCT, we 
can only obtain the current oral CBCT image and evalu-
ate the enhanced image. In this paper, we use the follow-
ing no-reference image evaluation metrics as the basis: 
Brisque [47], natural image quality evaluator (NIQE) 
[48], FADE [49], average gradient (AG) [50]. The lower 
the Brisque [47] score, the higher the filtered image’s The 
lower the Brisque [47] score, the higher the fidelity of the 
filtered image and the less detail information is lost. The 
lower the NIQE [48] score, the more natural the image 
performance. The lower the FADE [49] score, the lower 

https://osf.io/f9r8v/
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the density of fog. The higher the AG [50] score, the more 
detail and the higher the clarity of the image.

Qualitative and quantitative comparisons on the Test 1 
dataset
Qualitative comparisons
First, we compared the different methods in the Test1 
dataset. As shown in Fig. 3, the CBCT image after CEDN 
[38] processing introduces new noise and exhibits an 
obvious white tone bias. The NLM-corrected image [39] 
shows more blocky areas and important details are not 
sufficiently highlighted, while producing obvious distor-
tion. MID [41] improves the contrast of the panoramic 
image, but the correction effect is not obvious enough, 
and the process may lead to halo-like artifacts. NNC [40] 
Although the contrast was corrected to a certain extent, 
the overall image visibility was low. BCD [42] introduced 
a haze-like situation, which affected the image to a cer-
tain extent. GM [43] led to color deviation and local noise 
in the image. DCFD [44] failed to highlight local details 
in the overall image. DPRN [45] introduced unwanted 
white and grey noise during the correction process. The 
overall whiteness characteristic of the SDCN-enhanced 
image [46] and the enhancement information is not clear 
enough. In contrast, our method enhances the details of 
the CBCT image to the maximum extent, highlights the 
local contrast of the image, and successfully avoids the 
white balance distortion problem.

Quantitative comparisons
In order to comprehensively assess the differences in the 
performance of CBCT oral miniscrew images in terms 
of contrast, white balance, and visibility correction, we 
employed a variety of quantitative scoring metrics for in-
depth analysis. Specifically, we utilized metrics such as 
Brisque [47], NIQE [48], FADE [49], and AG [50] scores 
to quantitatively assess the performance of different 
methods on the Test 1 dataset, and the relevant results 
are shown in Table 1. In the analysis of the Test 1 data-
set, our method consistently performs well on all evalua-
tion metrics, significantly outperforming the comparison 
methods. This demonstrates the superior performance of 

Fig. 3  Comparative results of qualitative evaluation of different algorithms in Test 1 dataset. Here we show the enhancement effect of different 
algorithms on oral CBCT images

Table 1  The results of the unreferenced evaluation metrics 
compared to the nine algorithms are in Test 1

Methods Test 1

Brisque↓ NIQE↓ FADE↓ AG↑

CEDN 70.6131 8.2567 1.1123 2.8567

NLM 72.3456 7.8976 1.0376 3.1590

NNC 69.1234 7.6234 1.1456 3.0234

MID 70.4321 8.7654 1.1832 2.9812

BCD 68.9876 8.4321 1.0598 3.1123

GM 78.1234 7.5432 1.1987 3.0456

DCFD 71.2345 8.3210 1.0054 2.8976

DPRN 79.8765 8.1234 1.0234 3.0654

SDCN 70.3615 7.9876 1.1256 3.1987

Our 67.6204 7.4832 0.9624 3.3588
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our method in terms of contrast, white balance and vis-
ibility correction. Considering all metrics together, our 
results clearly demonstrate the importance of robust 
image processing techniques to enhance the understand-
ing of the oral miniscrew environment. These results not 
only emphasize the superiority of our method, but also 
the critical role of image processing in CBCT oral image 
analysis.

Qualitative and quantitative comparisons on the Test 2 
dataset
Qualitative comparisons
First, we compared the different methods on the Test2 
dataset. As shown in Fig.  4, the CEDN [38] -processed 
image shows an overall noise phenomenon, especially 
metal artifacts are more obvious, which will significantly 
reduce the accuracy of the detection of the arch and arch 

thickness. The NLM [39] method introduces new noise, 
which makes the overall distribution become uneven. 
Although the NNC [40] method enhances the details 
of the image to a certain extent, it also introduces some 
noise. MID [41] retains the details of the image but intro-
duces some foggy information. BCD [42] method does 
not show significant effect in image enhancement and 
cannot overcome the effect of the metal artifacts through 
post-processing. GM [43] method introduces white tones 
but weakens the expression of the detail information. 
MID [41] method introduces white tones but weakens 
the expression of the detail information. The DCFD [44] 
method was able to enhance the image contrast relatively 
stably, but still failed to highlight the details of the image. 
The DPRN [45] method enhanced the image contrast 
with white balance distortion, especially when the halo 
artifact phenomenon became obvious when the regions 

Fig. 4  Comparative results of qualitative evaluation of different algorithms in Test 2 dataset. Here we show the enhancement effect of different 
algorithms on oral CBCT images
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in the image were brighter than the surrounding regions. 
The halo phenomenon is manifested in the image as the 
edge portions of the highlighted regions show edges 
with lower brightness. On the contrary, the SDCN [46] 
method performs well in presenting detailed informa-
tion in the image, but the visibility of the image is low. 
Comparatively, our method maximizes the details of the 
CBCT image while successfully avoiding the problem of 
different white balance distortions.

Quantitative comparisons
In order to comprehensively assess the performance of 
different methods on CBCT oral miniscrew images in 
terms of contrast, white balance, and visibility correction, 
we used a variety of scoring metrics for quantitative anal-
ysis. Specifically, we use four evaluation metrics: Brisque 
[47], NIQE [48], FADE [49], and AG [50]. We are able to 
clearly evaluate the performance of different algorithms 
through the results on the Test 2 dataset, and the detailed 
results are listed in Table 2. The experimental results on 
the Test 2 dataset show that our method outperforms 
the comparison algorithms on all four evaluation met-
rics, which suggests that the proposed algorithm is very 
good at visibility and white balance correction. In conclu-
sion, by quantitatively comparing the proposed algorithm 
with several algorithms, we demonstrate the advantages 

of the proposed algorithm and analyze the importance of 
understanding CBCT images of small oral screws.

Ablation experiment
In this section, two image datasets are selected to ensure 
the generalizability of the experimental results. Select 
the image processing algorithms benchmarked by the 
proposed method for comparing the effectiveness of 
other processing methods. Apply the designed process-
ing scheme to the selected image datasets to generate the 
processed images. Evaluate the processed images using 
the selected evaluation metrics and record the results. 
Ensure that sufficient sample size and statistical analysis 
methods are used in the experiment to draw reliable con-
clusions. We performed a quantitative evaluation through 
ablation experiments, the relevant results of which are 
listed in Table 3. Through these experiments, we gained a 
deeper understanding of each component’s contribution 
to improving the algorithm’s performance: 1) our method 
was performed without the visibility restoration module 
(-w/o VRM). 2) our method was performed without the 
contrast enhancement module (-w/o CEM). We evalu-
ated and analyzed the effectiveness of this technique by 
means of an oral CBCT low-dose enhancement abla-
tion experiment. The results of the oral CBCT low-dose 
enhancement ablation experiments demonstrated signifi-
cant effectiveness in improving the quality of oral CBCT 
images and visualization of anatomical structures.

Discussion
The proposed method takes into account the charac-
teristics of oral low-dose CBCT images, overcomes 
the artifacts, detail loss, and color distortion caused 
by excessive enhancement of oral low-dose CBCT 
images, and maximizes the enhancement of oral low-
dose CBCT images while retaining details and struc-
tural information. Judging from the evaluation index 
results of the two data sets, the proposed method has 
excellent results, but the method in this paper still 
has limitations and challenges. In order to improve 
the quality of low-dose CBCT images, more complex 
image reconstruction algorithms are necessary, such 
as iterative reconstruction techniques. However, these 
algorithms are computationally intensive and have 

Table 2  The results of the unreferenced evaluation metrics 
compared to the nine algorithms are in Test 2

Methods Test 2

Brisque↓ NIQE↓ FADE↓ AG↑

CEDN 51.2345 7.1234 1.7856 1.8790

NLM 54.5678 7.7890 1.5234 1.5432

NNC 52.1234 8.2345 1.9378 1.9876

MID 50.9876 6.9876 2.0456 1.3210

BCD 53.4321 7.4567 1.6543 2.0345

GM 51.8765 8.0987 1.8567 1.6543

DCFD 54.3210 6.8765 1.7890 1.7890

DPRN 50.3456 8.3456 2.0765 1.4321

SDCN 52.7890 7.5432 1.4321 1.9987

Our 49.6822 6.6040 1.3184 2.2253

Table 3  Results of ablation experiments on two datasets

Ablated models Test 1 Test 2

Brisque↓ NIQE↓ FADE↓ AG↑ Brisque↓ NIQE↓ FADE↓ AG↑

-w/o VRM 68.170 7.501 1.131 3.190 50.181 6.938 1.591 2.140

-w/o CEM 69.601 7.638 1.058 2.938 51.308 6.829 1.641 1.904

Full model 67.620 7.483 0.962 3.218 49.682 6.604 1.432 2.225
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high requirements on hardware equipment, which may 
increase costs and processing time. In addition, the 
trade-off between image noise and resolution is very 
important. While reducing radiation dose, the noise 
level of the image will often increase, which will affect 
the image quality. Improving noise control techniques 
often sacrifices some spatial resolution, an impor-
tant consideration in medical applications that require 
high-precision diagnostics. In the future, we will work 
on solving trade-off issues like noise and resolution, 
and solving this problem based on deep learning is the 
focus of our research.

Conclusion
In this paper, we propose an enhancement method for 
low-dose CBCT oral images based on image fusion. Spe-
cifically, we consider the low-dose CBCT image over/
underexposure, visibility and contrast issues. In order 
to compensate for the loss of detail in the under/over-
exposed regions, a sharpening correction module is pro-
posed. A visibility restoration module based on type-II 
fuzzy sets is designed, and a contrast enhancement mod-
ule using curve transformation is designed. In addition 
to this, we propose a perceptual fusion module that fuses 
visibility and contrast of oral CBCT images.

In this experiment, we conducted a detailed study for 
oral CBCT low-dose enhancement. By comparing the 
experimental results, compared with such enhancement 
methods, our method can effectively reduce the noise 
and artifacts in the image and improve the clarity and 
contrast of the image. It is able to observe the implan-
tation of small subzygomatic screws more accurately. 
The details and contours of the image are clearer, which 
helps doctors to make accurate diagnosis and treatment 
planning. Our method maintains consistent interpret-
ability, allowing physicians to understand the process of 
image enhancement and trust the results. Based on the 
results of our current study, we will continue to explore 
the following aspects to further improve the oral CBCT 
low-dose enhancement technique. We will further opti-
mize the deep learning model to improve the enhance-
ment of low-dose CBCT images.
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