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Abstract 

Background Fibrosis has important pathoetiological and prognostic roles in chronic liver disease. This study evalu‑
ates the role of radiomics in staging liver fibrosis.

Method After literature search in electronic databases (Embase, Ovid, Science Direct, Springer, and Web of Science), 
studies were selected by following precise eligibility criteria. The quality of included studies was assessed, and meta‑
analyses were performed to achieve pooled estimates of area under receiver‑operator curve (AUROC), accuracy, 
sensitivity, and specificity of radiomics in staging liver fibrosis compared to histopathology.

Results Fifteen studies (3718 patients; age 47 years [95% confidence interval (CI): 42, 53]; 69% [95% CI: 65, 73] males) 
were included. AUROC values of radiomics for detecting significant fibrosis (F2‑4), advanced fibrosis (F3‑4), and cirrho‑
sis (F4) were 0.91 [95%CI: 0.89, 0.94], 0.92 [95%CI: 0.90, 0.95], and 0.94 [95%CI: 0.93, 0.96] in training cohorts and 0.89 
[95%CI: 0.83, 0.91], 0.89 [95%CI: 0.83, 0.94], and 0.93 [95%CI: 0.91, 0.95] in validation cohorts, respectively. For diagnos‑
ing significant fibrosis, advanced fibrosis, and cirrhosis the sensitivity of radiomics was 84.0% [95%CI: 76.1, 91.9], 86.9% 
[95%CI: 76.8, 97.0], and 92.7% [95%CI: 89.7, 95.7] in training cohorts, and 75.6% [95%CI: 67.7, 83.5], 80.0% [95%CI: 70.7, 
89.3], and 92.0% [95%CI: 87.8, 96.1] in validation cohorts, respectively. Respective specificity was 88.6% [95% CI: 83.0, 
94.2], 88.4% [95% CI: 81.9, 94.8], and 91.1% [95% CI: 86.8, 95.5] in training cohorts, and 86.8% [95% CI: 83.3, 90.3], 94.0% 
[95% CI: 89.5, 98.4], and 88.3% [95% CI: 84.4, 92.2] in validation cohorts. Limitations included use of several methods 
for feature selection and classification, less availability of studies evaluating a particular radiological modality, lack 
of a direct comparison between radiology and radiomics, and lack of external validation.

Conclusion Although radiomics offers good diagnostic accuracy in detecting liver fibrosis, its role in clinical practice 
is not as clear at present due to comparability and validation constraints.
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Introduction
Chronic liver disease is an important health concern due 
to high prevalence of metabolic dysfunction associated 
fatty liver disease (MAFLD), hepatitis B/C, and alcoholic 

liver disease. Whereas mortality due to liver disease has 
declined in some countries like the USA and China, 
some countries such as India and Mongolia still have 
higher mortality rates. Increasing trends in the preva-
lence are also noted in the United Kingdom and Russia 
[1]. In the USA, 1.8% of the population has a liver disease 
diagnosis [2]. In China, although the mortality rates have 
decreased, the prevalence of liver disease is increasing 
[3]. Globally, the incidence of non-alcoholic steatohepa-
titis-caused cirrhosis is increasing by 1.35% each year [4].

Liver fibrosis is a modifiable factor that is associated 
with worse health outcomes, transplants, and mortality 
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[5]. Liver fibrosis may develop due to chronic viral infec-
tion, long-term alcohol use, or steatohepatitis. It is esti-
mated that liver fibrosis affects 7.7% of individuals in 
the general population of the United States of America 
and obese individuals are at much higher risk [6]. The 
latest stage of fibrosis, cirrhosis, is the eleventh leading 
cause of mortality [1]. An increasing trend in mortality 
due to cirrhosis has been observed globally from 1990 to 
2017 [7]. Several methods are available to measure liver 
fibrosis. The liver biopsy is considered diagnostic “gold 
standard” for staging liver fibrosis. The biopsy is a highly 
valuable tool but can be associated with complications, 
sampling errors, and between-observer variations in 
judgments. Fibrosis can be patchy so that not all parts of 
the liver contain fibrosis evenly, therefore, a biopsy may 
fail to capture some samples [8]. Among other meth-
ods, serum biomarkers may also help in detecting fibro-
sis. Radiological methods including magnetic resonance 
imaging (MRI) magnetic resonance elastography (MRE), 
computed tomography (CT), ultrasonography, and elas-
tography also provide non-invasive means of measuring 
fibrosis [9].

Radiomics is a post-radiology process of high-through-
put extraction of features from radiological images for 
conversion into mineable data involving complex pro-
cesses of artificial intelligence such as machine learn-
ing, deep learning, and convolutional neural networks to 
maximize predictability. It is developed on the premise 
that pathophysiological tissues and organs contain much 
information that can be quantified and differentiated 
from normal tissues and organs. Extraction of a large 
number of features to form a database and then mining 
the data for analyses aids decision support leading to 
improved diagnostic accuracy and prognostic capability 
[10–12]. Radiomics takes texture as a spatial arrange-
ment of predefined voxels through which complicated 
features of the image can be read and mathematical cal-
culations of these arrangement characteristics differen-
tiate normal from abnormal. The heterogeneity in the 
selected features reflects the heterogeneity of histopatho-
logical changes [13]. Radiomics features can be mor-
phological, histogram, textural, and high-order features. 
Morphological features include the shape, size, and vol-
ume of the region of interest. Histogram is the plotting 
of pixel values against pixel frequency and can be used 
to describe many features such as magnitude, dispersion, 
asymmetry, peakedness, flatness, randomness, uniform-
ity, etc. Textural features provide spatial relationships 
between neighboring pixels. High-order features are 
those acquired after applying filters to images [12, 14].

Several reviews have described the role of radiomics 
in the diagnosis and staging of various types of cancers 
[15, 16]. Among other clinical applications, radiomics 

has been found to be a valuable aid in cardiomyopathy 
[17, 18], musculoskeletal diseases [19, 20], neurologi-
cal and psychiatric disorders [21–24], and liver diseases 
[25]. Several studies have reported the diagnostic accu-
racy indices of radiomics in diagnosing and staging liver 
fibrosis. However, there is no synthesis of these outcomes 
which are sometimes variable and even inconsistent. The 
present study aimed to evaluate the role of radiomics in 
diagnosing and staging liver fibrosis by conducting a sys-
tematic review of relevant studies and performing meta-
analyses of statistical indices.

Method
The present study was conducted by following PRISMA 
guidelines.

Inclusion and exclusion criteria
A study was included in the meta-analysis if a) it prospec-
tively or retrospectively recruited patients with chronic 
liver disease who had histologically confirmed fibrosis 
in the liver; b) performed radiomic analyses based on 
any radiological modality to diagnose and/or differenti-
ate fibrosis; and c) reported diagnostic accuracy indices 
of radiomics in diagnosing and differentiating liver fibro-
sis stages by in comparison with histopathology. Studies 
were excluded based on the following criteria: a study a) 
reported diagnostic performance of radiomics for liver 
fibrosis without adequate statistical data; b) reported the 
outcomes of pediatric patients; and c) reported the diag-
nostic accuracy of a combined clinical-radiological radi-
omics model.

Literature search
Electronic scientific databases (Embase, Ovid, Science 
Direct, Springer, and Web of Science) were searched for 
the identification of relevant studies using area-specific 
keywords. The primary search strategy was “Radiomics 
AND liver fibrosis OR cirrhosis AND diagnostic accu-
racy”. Secondary keywords were used in several other 
combinations with this primary string. The detailed lit-
erature search strategy is given in Appendix S1. After the 
identification of studies, reference lists of related articles 
were also screened for additional studies. The literature 
search encompassed peer-reviewed research articles 
published in English from the date of database inception 
till May 2023.

Data analysis
Data on the design and conduct of studies, patient demo-
graphics, clinical characteristics, fibrosis stage, radiomics 
design and analyses, and diagnostic accuracy outcome 
data were extracted from the research articles of respec-
tive studies and organized in data sheets. The quality 
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of the included studies was assessed with the Quality 
Assessment of Diagnostic Accuracy Studies (QUA-
DAS-2) scale. This scale assesses the quality of studies 
under the domains of risk of bias and applicability con-
cerns by evaluating patient selection, index test, refer-
ence standard, and flow and timing. Diagnostic accuracy 
endpoints (Accuracy, area under receiver operator curve 
(AUROC), sensitivity, and specificity of various radiom-
ics models compared to histologically proven fibrosis 
were extracted from the research articles of respective 
studies and pooled under random effects model using 
the point estimates and their 95% confidence intervals 
of these indices. Subgroup analyses were performed 
with respect to fibrosis stage (significant fibrosis; stages 
F2-4, advanced fibrosis; stages F3-4, and cirrhosis; stage 
F4) and with respect to the study cohort (training, test/

validation). Statistical analyses were performed with 
Stata software (Stata Corporation, College Station, Texas, 
USA).

Results
Fifteen studies [13, 26–39] were included that were 
published between 2018 and 2023 (Fig.  1). In these 
studies, radiomic analyses were performed involving 
3718 patients with chronic liver diseases including hep-
atitis and MAFLD. The age of these patients was 47.3 
years [95% confidence interval (CI): 42.0, 52.5]. The 
proportion of males was 69% [95% CI: 65, 73]. Histo-
logically (biopsy/surgical) confirmed fibrosis stage was 
F0 in 13% [95% CI: 7,20], F1 in 17% [95% CI: 13, 23], F2 
in 21% [95% CI: 17,26], F3 in 16% [95% CI: 13,19], and 
F4 in 27% [95% CI: 23, 33] of the patients. Radiological 

Fig. 1 A flowchart of study screening and selection process
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modalities used in these studies were: MRI (5), CT (3), 
ultrasonography (2), positron emission tomography (1), 
shear-wave elastography (2), and MRE (2).

Important characteristics of the included studies are 
given in Table S1. The quality of the included studies 
was moderate in general according to the QUADAS-2 
scale (Table S2). The risk of bias was limited to the ret-
rospective design of studies which could have intro-
duced patient selection bias. Moreover, the interval 
between the index test and reference test was up to six 
months which might have impacted adequate flow and 
timing. Included studies also varied with regards to 
validation ranging from no validation [26], Five/Ten-
fold cross-validation [27, 30, 32, 36, 39], and leave-one-
out cross-validation [13] to internal validation [28, 30, 
31, 33, 34, 37, 38], and internal and external validation 
[29]. There was no significant publication bias accord-
ing to Egger’s test (Bias coefficient 0.114 [-11.80, 12.03]; 
p=0.984) or Begg’s test (Adjusted Kendall’s score 
-29±18; p=0.125) (Figure S1a and b).

The pooled AUROC value of radiomics for the diag-
nosis of any liver fibrosis was 0.878 [95% CI: 0.850, 
0.906]. The AUROC values for the detection of sig-
nificant fibrosis, advanced fibrosis, and cirrhosis were 
0.914 [95% CI: 0.889, 0.938], 0.924 [95% CI: 0.901, 
0.946], and 0.944 [95% CI: 0.929, 0.963] respectively in 
training cohorts, and 0.886 [95% CI: 0.826, 0.905], 0.887 
[95% CI: 0.834, 0.939], and 0.930 [95% CI: 0.905, 0.954] 
respectively in test/validation cohorts (Figs. 2 and 3).

The pooled accuracy of radiomics in diagnosing 
any liver fibrosis was 83.5% [95% CI: 81.7, 85.4]. The 
accuracy values of radiomics in the detection of sig-
nificant fibrosis, advanced fibrosis, and cirrhosis were 
80.6% [95% CI: 76.2, 85.1], 83.5% [95% CI: 81.3, 85.8], 
and 81.6% [95% CI: 78.7, 84.5] respectively in training 
cohorts, and 77.0% [95% CI: 68.6, 85.5], 84.3% [95% CI: 
79.8, 88.8], and 81.3% [95% CI: 77.0, 85.7] respectively 
in test/validation cohorts (Figures S2a and b).

In training cohorts, the sensitivity of radiomics in 
diagnosing significant fibrosis, advanced fibrosis, and 
cirrhosis was 84.0% [95% CI: 76.1, 91.9], 86.9% [95% CI: 
76.8, 97.0], and 92.7% [95% CI: 89.7, 95.7] respectively 
(Fig.  4). In test/validation cohorts, the sensitivity of 
radiomics in diagnosing significant fibrosis, advanced 
fibrosis, and cirrhosis was 75.6% [95% CI: 67.7, 83.5], 
80.0% [95% CI: 70.8, 89.3], and 92.0% [95% CI: 87.8, 
96.1] respectively (Fig. 5).

In training cohorts, the specificity of radiomics in 
diagnosing significant fibrosis, advanced fibrosis, and 
cirrhosis was 88.6% [95% CI: 83.0, 94.2], 88.4% [95% CI: 
81.9, 94.8], and 91.1% [95% CI: 86.8, 95.5], whereas in 
test/validation cohorts, the specificity was 86.8% [95% 

CI: 83.3, 90.3], 94.0% [95% CI: 89.5, 98.4], and 88.3% 
[95% CI: 84.4, 92.2] respectively (Figure S3a and b).

Among the included studies, Hu et al. [27] who found 
thin-sliced CT images to yield better performance of 
radiomics than thick-sliced CT images reported AUROC 
values of 0.90 [95% CI: 0.84, 0.96] for F1 vs F2-4, 0.85 
[95% CI: 0.78, 0.92] for F1-2 vs F3-4, and 0.94 [95% CI: 
0.89, 0.97] for F1-3 vs F4 stages. Lan et al. [13] who stud-
ied MRE radiomics found AUROC values of 0.89 [95% 
CI: 0.84, 0.94] for F0 vs F1-4, 0.93 [95% CI: 0.89, 0.98] for 
F0-1 vs F2-4, 0.92 [95% CI: 0.88, 0.97] for F0-2 vs F3-4, 
and 0.95 [95% CI: 0.90, 0.997] for F0-3 vs F4 stages in 
their echo-planar images. They observed AUROC values 
of 0.89 [95% CI: 0.83, 0.94], 0.87 [95% CI: 0.81, 0.93], 0.89 
[95% CI: 0.84, 0.95], and 0.94 [95% CI: 0.89, 0.997] for F0 
vs F1-4, F0-1 vs F2-4, F0-2 vs F3-4 and F0-3 vs F4 stages 
respectively in their gradient recalled echo images.

Discussion
This meta-analysis found that radiomics exhibits high 
accuracy in diagnosing and staging liver fibrosis. The 
AUROC values for the detection of significant fibrosis, 
advanced fibrosis, and cirrhosis were approximately 0.91, 
0.92, and 0.94 in training cohorts and 0.89, 0.89, and 0.93 
in validation cohorts, respectively. However, despite the 
good efficiency of radiomics in diagnosis and staging 
liver fibrosis observed herein, several factors make these 
findings inconclusive and dependent on future stud-
ies to refine this evidence. For example, several types of 
radiological modalities were used for radiomics in indi-
vidual studies and a direct comparison of diagnostic per-
formance between radiomics and radiology was mostly 
lacking. Moreover, various models were utilized for radi-
omics, and these studies lacked external validation.

Some studies that could not be included in this meta-
analysis have also reported variable diagnostic perfor-
mance of radiomics in staging liver fibrosis. Cui et  al. 
[40] utilized multiphase CT-based radiomics to stage 
liver fibrosis and found the sensitivity of diagnosing sig-
nificant fibrosis, advanced fibrosis, and cirrhosis to be 
30-41%, 59-71%, and 84-87%, and the specificities being 
84-90%, 71-79%, and 50-58% respectively. Duan et  al. 
[41] observed better performance of ultrasound-based 
radiomics in diagnosing cirrhosis (AUROC 0.86) than 
advanced fibrosis (AUROC 0.77). Zhou et  al. [42], also 
reported higher efficieny of ultrasound-based radiom-
ics in diagnosing cirrhosis (AUROC 0.83-0.86) than sig-
nificant fibrosis (AUROC 0.69-0.71) or advanced fibrosis 
(AUROC 0.67-0.72).

Many studies have shown that the diagnostic accuracy 
of radiomics is better than serological biomarkers [30, 
42–44]. Sim et  al. [32] found better diagnostic perfor-
mance of MRE radiomics (AUROC 0.97 [95% CI: 0.93, 1]) 
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than clinical features (AUROC 0.91 [95% CI: 0.81, 0.97]) 
in diagnosing significant fibrosis. Wang et  al. [34] also 
reported that the AUROC values for significant fibrosis, 
advanced fibrosis, and cirrhosis were higher with CT-
based radiomics (AUROC 0.88, 0.90, and 0.86) than with 
either aspartate transaminase-to-platelet ratio (AUROC 
0.69, 0.67, and 0.65) or Fibrosis-4 index (AUROC 0.71, 
0.71, and 0.7) respectively. Xue et  al. [35] also found 

better diagnostic performance of multimodal ultra-
sound radiomics (AUROC 0.9-0.93) than either aspar-
tate transaminase-to-platelet ratio (AUROC 0.72-0.78) 
or Fibrosis-4 index (AUROC 0.69-0.75) in staging liver 
fibrosis. Zhao et al. [38] found better diagnostic efficiency 
of MRI radiomics (accuracy 0.8) than clinical markers 
(accuracy 0.68) in differentiating non-significant fibro-
sis from clinically significant fibrosis in the test cohort. 

Fig. 2 Forest graphs showing the outcomes of meta‑analysis of AUROC values of radiomics in diagnosing fibrosis stages in training cohorts
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Some authors have suggested that a model combining 
radiomics and clinical biomarkers may further improve 
the diagnostic accuracy of fibrosis [38, 45].

Despite good diagnostic accuracy values observed 
for radiomics in liver fibrosis assessment in the pre-
sent study, inconsistencies were observed in the out-
comes of individual studies. Whereas Wang et  al. [34] 
and Lan et  al. [13] found radiomics better than radio-
logical elastography in diagnosing advanced fibrosis 
and cirrhosis, Sim et al. [32] did not find a statistically 

significant difference. Lu et  al. [29] and Sim et  al. [32] 
found that radiomics distinguished well between signif-
icant fibrosis (F2-4) and non-significant fibrosis (F0-1). 
However, Zhang et al. [37] reported that radiomics was 
unable to distinguish between non-significant fibrosis 
and significant fibrosis. Zhao et al. [38] reported that a 
combined use of radiomics and clinical biomarkers per-
formed better than radiomics alone, whereas Sim et al. 
[32] did not find a significant difference in performance 
between radiomics and combined use of radiomics, 
radiology, and clinical biomarkers.

Fig. 3 Forest graphs showing the outcomes of meta‑analysis of AUROC values of radiomics in diagnosing fibrosis stages in test/validation cohorts
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We have observed that some diagnostic accuracy 
indices were slightly higher in training cohorts than in 
validation cohorts. Wang et  al. [33] who found that the 
accuracy of deep learning radiomics of elastography for 
the diagnosis of significant fibrosis was lower in the vali-
dation cohort in comparison with the training cohort 
suggested that this could be because of the lower het-
erogeneity in F0 and F1 groups and can be overcome 
possibly by adapting multiple strategies for fibrosis 
classification. Lu et  al. [29] found that AUROC values 
increased for their deep learning radiomics of elastog-
raphy when datasets had a higher prevalence of patients 
with F0 and F1 stages. They suggested that the inclusion 
of higher proportions of patients with F0 and F1 stages 
can yield better accuracy because about 80% of patients 

with chronic hepatitis B have F0 or F1 stage in the gen-
eral population. In the present study, the pooled percent-
ages of patients with F0 and F1 stages were 13% and 17% 
respectively.

Fibrosis develops by the excessive deposition of extra-
cellular matrix in the liver as a response to wound heal-
ing after which satellite cells activate, higher levels of 
alpha smooth muscle actins are produced, and collagen 
I/II are synthesized. Such processes increase the stiff-
ness of the liver progressively and may lead to cirrhosis. 
Fibrosis is usually associated with the accumulation of 
collagen fibers, not well-defined portal vein walls, and 
irregular hepatic vein margins. Gray-scale ultrasound 
images capture such information to reflect the scat-
tering of fine structures. Moreover, coarse echotexture 

Fig. 4 A forest graph showing the outcomes of meta‑analysis of the sensitivity of radiomics in diagnosing fibrosis stages in training cohort
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and a mild increase in echogenicity of hepatic paren-
chyma are usually observed in cirrhosis [35].

So far, studies addressing radiomics lack robust vali-
dation in larger and clinically diverse settings which 
present reproducibility challenges. In the present 
review, we found that all except one study involved 
internal validation, and therefore, the synthesis of 
these outcomes remains inconclusive and depend-
ent on future studies with larger sample sizes and bet-
ter designs with special focus on external validation. 
Radiomics models without external validation are at 
increased risk of being specialized in specific radio-
graphs that hamper generalizability due to overfitting 
[46].

Overfitting and multi-collinearity may affect radiom-
ics models. During training, high-dimensional features 
may overfit and thus may yield optimistic outcomes. 
Moreover, traditional statistical models may not work 
adequately to deal with multicollinearity among textural 
features. To avoid this, it is suggested that the removal 
of unreliable or irrelevant features and the reduction of 
dimensions of predictors may yield better outcomes [30, 
31]. The sensitivity of AdaBoost to noisy data or outliers 
makes it more suitable for cases facing overfitting prob-
lems. A frequently used classifier, the Support Vector 
Machine, uses preselected nonlinear mapping to map 
input parameters in a high-dimensional feature space 
to optimize feature classification. Random forest unifies 

Fig. 5 A forest graph showing the outcomes of meta‑analysis of the sensitivity of radiomics in diagnosing fibrosis stages in test/validation cohorts
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several weak predictor classifiers to make an accurate and 
stable predictor [28].

The AUROC is a performance metric to quantify the 
power of a model in discriminating cases from non-cases. 
An AUROC value can lie between 0 and 1. It combines 
the sensitivity and specificity of a marker/modality for the 
diagnosis of a precisely defined stage of fibrosis. Sensitiv-
ity is usually evaluated in patients with advanced fibrosis 
and specificity in non-advanced fibrosis [47]. However, 
the AUROC values can be biased if the fibrosis distribu-
tion in the study population differs from that of the whole 
population to which it is being applied [48]. Although 
biopsy is considered a gold standard for the diagnosis of 
fibrosis in the liver, it has a high rate of false positives and 
false negatives in comparison with the whole liver due to 
sampling error. An AUROC value of 0.82 for distinguish-
ing between F2 and F1 when the entire liver was used as 
the reference index will inform approximately 20% error 
rate of the biopsy (false positive and false negative rates) 
compared with the entire liver. Thus, discordance in the 
staging of liver fibrosis between a modality such as radi-
omics and biopsy can be due to an error of the modality 
as well as due to an error of the biopsy [47].

Currently, the evidence regarding the role of radiom-
ics in diagnosis of liver fibrosis and staging is constrained 
with several caveats. Quality of medical images acquired 
through different modalities may vary depending on sev-
eral factors such as scanners, protocols, and personnel 
that can affect the reproducibility of radiomics output. A 
lack of standardization of image acquisition, preprocess-
ing steps, extraction of features, and analyses also makes 
it difficult to compare radiomics outcomes of various 
studies performed under different settings. The etiology 
of fibrosis, progression, and the presence of comorbidi-
ties may also affect the accuracy of radiomics outcomes. 
Moreover, biological interpretation of radiomic features 
is lacking due to which it is difficult to associate radiomic 
features with histopathological characteristics.

Several limitations of the present study need to be 
considered while interpreting the outcomes of this 
review. An important limitation of the present study 
was the presence of high statistical heterogeneity in 
the meta-analyses. Although sources of heterogene-
ity could not be traced statistically, it is reasonable to 
assume that clinical and methodological heterogeneity 
might have played an influencing role. Authors utilized 
different methods for feature selection and classifica-
tion, worked with a variety of software, and analyzed a 
highly variable number of features. Radiomics analyses 
were based on several radiological modalities and fewer 
studies were available to evaluate a particular modality 
in a pooled design. Most studies were retrospective in 

design due to which several types of biases could have 
been introduced. Inclusion and exclusion criteria dif-
fered substantially across the included studies that 
recruited several conditions of chronic liver disease 
including hepatitis B/C, autoimmune hepatitis, liver 
failure, early-stage cirrhosis, nonalcoholic fatty liver 
disease, and primary sclerosing cholangitis. Some stud-
ies could not be included because of the lack of vari-
ance data for diagnostic accuracy indices.

Conclusion
In this meta-analysis of 15 studies, the use of radiomics 
in staging liver fibrosis has been found to be associated 
with good diagnostic accuracy. However, the present-
day outcome data are inconclusive regarding the use 
of radiomics in clinical practice owing to heterogeneity 
in methodology and outcomes of reviewed studies in 
which the radiomic evaluations were based on several 
radiological modalities subjected to a variety of ana-
lytical models yielding varying outcomes and lacking 
external validation. Non-invasiveness and the involve-
ment of machine learning make radiomics an attractive 
option for decision support. The outcomes reported 
so far are promising and need to be validated in multi-
center studies having larger datasets and better compa-
rability and validation aspects in designs.
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