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Abstract
Background The study aimed to develop and validate a deep learning-based Computer Aided Triage (CADt) 
algorithm for detecting pleural effusion in chest radiographs using an active learning (AL) framework. This is aimed 
at addressing the critical need for a clinical grade algorithm that can timely diagnose pleural effusion, which affects 
approximately 1.5 million people annually in the United States.

Methods In this multisite study, 10,599 chest radiographs from 2006 to 2018 were retrospectively collected from an 
institution in Taiwan to train the deep learning algorithm. The AL framework utilized significantly reduced the need for 
expert annotations. For external validation, the algorithm was tested on a multisite dataset of 600 chest radiographs 
from 22 clinical sites in the United States and Taiwan, which were annotated by three U.S. board-certified radiologists.

Results The CADt algorithm demonstrated high effectiveness in identifying pleural effusion, achieving a sensitivity 
of 0.95 (95% CI: [0.92, 0.97]) and a specificity of 0.97 (95% CI: [0.95, 0.99]). The area under the receiver operating 
characteristic curve (AUC) was 0.97 (95% DeLong’s CI: [0.95, 0.99]). Subgroup analyses showed that the algorithm 
maintained robust performance across various demographics and clinical settings.

Conclusion This study presents a novel approach in developing clinical grade CADt solutions for the diagnosis of 
pleural effusion. The AL-based CADt algorithm not only achieved high accuracy in detecting pleural effusion but also 
significantly reduced the workload required for clinical experts in annotating medical data. This method enhances the 
feasibility of employing advanced technological solutions for prompt and accurate diagnosis in medical settings.
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Introduction
Pleural effusion is the buildup of fluid in the pleural 
space and can be caused by a range of conditions such 
as congestive heart failure, cancer, pneumonia, and pul-
monary embolism [1]. In the United States, pleural effu-
sion affects around 1.5  million people each year [2]. 
Chest radiographs remain the primary imaging test for 
any patient with suspected pleural disease [3]. In many 
clinical scenarios, pleural effusion is life-threatening and 
timing of diagnosis and treatment is critical for patient 
outcome as it can be easily overlooked due to the high 
volume of images radiologists need to review [4].

To date, deep learning (DL) algorithms have been con-
sidered to provide promising results in detecting abnor-
malities in medical images [5–11]. However, most studies 
have used retrospectively annotated datasets, where the 
training and validation data are historically annotated 
and often derived from the same population distribution 
[12]. As a result, the findings may be biased and difficult 
to generalize to real-world clinical practice [13]. The rea-
son behind this is due to a phenomenon called overfit-
ting, where there is insufficient representative training 
data for DL algorithms to learn robust representations 
and draw generalizable conclusions on unseen data [14]. 
This issue is particularly common in medical imaging as 
it has been historically difficult to annotate large amounts 
of medical data due to cost and patient confidentiality 
[15].

Recent studies have found that DL algorithms can be 
trained to achieve optimal performance via an active 
learning (AL) framework [16]. This method iteratively 
goes through the training data and samples informative 
data points such that experts can focus on annotating 
more challenging cases. This approach would help sig-
nificantly reduce the number of required expert annota-
tions while allowing algorithms to train on a much larger 
dataset.

The aim of this study was to validate whether a DL-
based Computer Aided Triage (CADt) algorithm can be 
developed under an active-learning framework to help 
reduce the workload for clinical experts while also pro-
ducing robust performance for clinical practice across 
multisite data.

Materials and methods
This retrospective study used data that were fully 
de-identified, anonymized and accessed under IRB 
CMUH106-REC3-118 with waived consent. This data 
was accessed on Feb 6th, 2023 for research purposes.

Study design
The AI algorithm was trained using a development data 
set of 10,599 anonymized chest radiographs and consec-
utively collected from an institution in Taiwan between 

2006 and 2018. This data set was stratified based on 
whether pleural effusion is present and randomly split 
into training (80%), validation (10%), and testing (10%). 
The testing set was used for internal validation. This 
data set was annotated by expert radiologists in Taiwan. 
A deep learning algorithm was trained based on the 
“Detectron2” [17] framework where data augmentations 
such as random rotation, flipping, translation, resizing 
was performed during training. A threshold of 0.5 was 
set as the cut off value for the probability score in indicat-
ing whether pleural effusion was present in each radio-
graph and the pipeline was further revised such that the 
algorithm could be trained via active learning where the 
parameters were updated using the stochastic gradient 
descent with a batch size of four. The final output pro-
duces a binary result tailored for clinical triage purposes. 
Initially, the algorithm was trained using the development 
data set from Taiwan and a randomly pooled (10%) set of 
the training data was used for initial expert annotation to 
develop the first baseline algorithm [18]. The objective 
of the AL framework was to continually update the algo-
rithm by iteratively going through the data and sampling 
the most informative examples for annotation to mini-
mize annotation efforts. There are many sampling meth-
ods in active learning. The approach conducted in this 
study was to use the uncertainty method [19–21]. This 
methodology employs a sampling technique that selects 
batches of data with high uncertainty scores for expert 
annotation in each iteration. Uncertainty is assessed 
using the Difficulty Calibrated Uncertainty Sampling 
(DCUS) method, inspired by [22]. This method combines 
category-wise entropy and object detection entropy to 
calculate the “difficulty” of samples, which then informs 
the AL pooling criteria. Furthermore, in each iteration, 
the algorithm selects highly confident data with low 
uncertainty scores to serve as pseudo-labeled data. These 
are then incorporated into the training set for the sub-
sequent iteration, effectively combining active learning 
with pseudo labeling techniques. The number of itera-
tions used was 212,000 determined based on the hyper-
parameter optimization result of a batch size of four and 
updated the parameters using a stochastic gradient algo-
rithm. Studies have shown that expert annotations can 
be reduced to 90% using the active learning framework, 
and thus for each iteration, predicted data with uncer-
tain scores are selected for expert annotation [23]. The 
remaining 90% of the training data utilized a semi-super-
vised method by using the pseudo labels generated by the 
algorithm and treated them as ground truth during train-
ing. Many studies have shown that pseudo labels provide 
consistency regularization and improved performance as 
the algorithm goes through all of the training data with 
minimal annotated data [24]. The overall training design 
is summarized in Fig. 1.
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An external validation was then designed to further 
validate the algorithm’s performance against expert 
radiologists from the United States (U.S.) through a ret-
rospective standalone performance study with multi-
readers and multisite data sets from the U.S. and Taiwan.

The code underlying this work can be found online at 
https://github.com/facebookresearch/detectron2.

External validation data collection
A total of 600 anonymized chest radiographs were con-
secutively collected between 2015 and 2020 from 21 clin-
ical sites in the U.S. and between 2019 and 2020 from 1 
clinical site in Taiwan. The data set were generated from 
13 different manufacturers of radiologic data source: 
Samsung Electronics, Shimadzu, Toshiba, Onica Minolta, 

GE Healthcare, Drtech, Canon Inc., Siemens, Oehm 
und Rehbein GmbH, Philips Medical Systems, Swissray, 
Kodak, Agfa, Fujifilm. The radiographs were collected 
following the inclusion and exclusion criteria with strati-
fication of whether the patient received thoracentesis as 
shown in Fig. 2.

The global criteria for the intended use patient popula-
tion in this study are defined as: greater or equal to 18 
years old in both females and males. For the chest x-ray 
image, the images were enrolled by using the following 
inclusion criteria: (1) the chin should not be superimpos-
ing any structures, (2) arms are not superimposed over 
the lateral chest wall (this can mimic pleural thickening), 
(3) minimal superimposition of the scapulae borders on 
the lung fields is acceptable, (4) sternoclavicular joints are 
equidistant from the spinous process, (5) the clavicle is in 
the same horizontal plane, (6) a maximum of ten poste-
rior ribs are visualized above the diaphragm, (7) the 5th 
-7th anterior ribs should intersect the diaphragm at mid-
clavicular line, (8) the ribs and thoracic cage are seen only 
faintly over the heart, and (9) clear vascular markings of 
the lungs should be visible.

Ground truth definition
The ground truthing of this assessment study included 
three U.S. board-certified expert radiologists reviewing 
the radiographs, and assigning whether a pleural effusion 
is present in each image. These radiologists all have the 
U.S. American Board of Radiology (ABR) board-certi-
fied in Diagnostic Radiology with greater than 10 years 
of experience in assessing Chest X-Ray and conducted 
a high volume (greater than 75 cases per week) of CXR 
assessments.

For each case, each radiologist was asked to provide 
the following information: pleural effusion is present or 

Fig. 2 Flowchart of the validation workflow

 

Fig. 1 Active learning framework with pseudo labeling
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absent, size (small/moderate/large) [25] and location 
(right/left/bilateral) of pleural effusion, and any addi-
tional comments the radiologist would like to provide 
about the case. It is worth noting, despite the common 
use of qualitative terms such as small, moderate, and 
large to describe pleural effusion sizes and factors such 
as blunting of the costophrenic angle, partial filling of the 
pleural space and substantial opacification of the hemi-
thorax, there currently isn’t a standardized grading sys-
tem universally accepted in the clinical community [25]. 
Consequently, the categorization of effusion size in this 
study is inherently based on the individual clinical judg-
ment of each reviewing radiologist. The presence, size, 
and location of pleural effusion were determined based 
on the majority agreement of three U.S. board-certi-
fied expert radiologists who reviewed the radiographs 

independently and was further defined as the ground 
truth (GT).

Statistical analysis
Data processing and statistical analyses were conducted 
using Python 3.6 and R 4.0.2. A chi-square test was used 
to test for independence between the categorical vari-
ables determining whether there was a statistically sig-
nificant association between the variables or whether 
they occur independently of each other. One-Sample Z 
tests were adopted as the testing method to verify the 
sensitivity, specificity, and AUROC (Area Under the 
Receiver Operating Characteristic curve) of the AI algo-
rithm respectively, against the GT. The 95% confidence 
intervals (95% C.I.) of the sensitivity, specificity and the 
AUROC of the AI algorithm were calculated to evaluate 
the performance of detecting pleural effusion. Notably, 
we employed DeLong’s method for computing the 95% 
CIs of the AUROC, which is particularly suited for cor-
related ROC curves, providing a more accurate assess-
ment of the algorithm’s diagnostic performance. This 
method adjusts for the correlation between the AUROC 
estimates, offering a rigorous statistical foundation for 
evaluating model accuracy. Additionally, Wilson’s score 
method was used for calculating the 95% CIs for sensi-
tivity and specificity. This approach is advantageous for 
binomial proportions, particularly in situations where the 
sample size is small or the event rate is very low or high, 
as it produces intervals that are more accurate and closer 
to the true population parameter than those obtained 
using simpler approximations.

An upper-tail test was used in the study where the sig-
nificant level (Type I error, α) was 2.5%. This statistical 
framework supported our efforts to ensure the AI algo-
rithm’s generalizability across different subpopulations, 
including variations by gender (male/female), data source 
(U.S./Taiwan), and manufacturer (Samsung Electronics, 
Shimadzu, Toshiba, etc.). Analyses also extended to sen-
sitivity for pleural effusion size (small/moderate/large) 
and location (right/left/bilateral), and an examination 
of potential confounders such as image quality issues or 
radiologic findings unrelated to pleural effusion, to deter-
mine their systematic impact on the AI’s performance.

Results
Patient characteristics
A total of 600 chest X-ray PA view images that met the 
inclusion criteria were consecutively selected for the 
study. Among them, 332 (55.3%) were male and 266 
(44.3%) were female. The mean (standard deviation, SD) 
age was 58.7 (17.7) years. The case distribution was per-
formed as detailed in Table 1 across the presence of pleu-
ral effusion or not.

Table 1 Basic characteristics for 600 external validation dataset
Cases
(N)

Pleural Effusion a P-value
Presence Absence

Gender 0.0759
 Female 266 116 150
 Male 332 169 163
 N/Ab 2 1 1
Age Group < 0.0001
 18–49 y/o 171 30 141
 50–64 y/o 186 103 83
 Above 65 y/o 242 153 89
 N/Ab 1 0 1
Data Source < 0.0001
 US 300 160 140
 Taiwan 300 126 174
Manufacturer 0.0004
 Samsung Electronics 135 64 71
 Shimadzu 159 67 92
 Toshiba 152 60 92
 Othersc 154 95 59
Size of Pleural Effusion -
 Small 196 196 -
 Moderate 73 73 -
 Large 16 16 -
 Size undefinedd 1 1 -
Location of Pleural Effusion -
 Right 134 134 -
 Left 85 85 -
 Bilateral 62 62 -
 Location undefinedd 5 5 -
a Presence and absence of pleural effusion cases were defined based on the 
majority agreement between the three radiologists.
b Cases’ where gender and age were unknown in the dataset.
c Other X-ray manufacturers include Konica Minolta, GE Healthcare, Drtech, 
Canon Inc., Siemens, Oehm und Rehbein GmbH, Philips Medical Systems, 
Swissray, Kodak, Agfa, Fujifilm, and unknown.
d Cases where only two radiologists agreed on the presence of pleural effusion 
and the size or location of the pleural effusion was in disagreement between 
the two radiologists. Thus, these cases were marked as undefine.
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Radiologist consistency analysis
Out of the 600 cases, we collected 1,800 pleural effusion 
assessments from three (3) radiologists. The consistency 
between the three (3) radiologists was evaluated using 
Cohen’s kappa to assess the agreement between each pair 
of radiologists in assessing the pleural effusion in 600 
cases. According to the strength of the agreement based 
on Cohen’s Kappa value, they all showed high agreement 
between any two of the radiologists, kappa = 0.84 (95% 
confidence interval [CI], 0.80 to 0.89), 0.8 (95% CI, 0.80 
to 0.89) and 0.89 (95% CI, 0.85 to 0.92), respectively, with 
all p < 0.0001 (Table 2).

Evaluation of standalone AI performance
The primary outcomes were the sensitivity, specific-
ity and AUC per case. For the model performance to be 
acceptable for future clinical use, the performance goals 
were set in accordance to the US Food and Drug Admin-
istration (FDA) regulatory guidelines [24] requiring such 
CADt devices to at least reach a sensitivity/specificity of 
over 0.8 and an AUC of greater or equal to 0.95 [26]. As 
shown in Table  3, the One-Sample Z tests showed the 
sensitivity and specificity both exceed 0.8, as well as an 
AUC exceed 0.95. The sensitivity of the AI algorithm was 
0.95 with a 95% CI of [0.92, 0.97], the specificity was 0.97 
with a 95% CI of [0.95, 0.99], and the AUC was 0.97 with 
a 95% DeLong’s CI of [0.95, 0.99]. Overall, the agreement 
between the AI algorithm and GT met the performance 
goal of exceeding 0.8 in both sensitivity and specificity, 
and AUC exceeding 0.95, compared with the GT.

The ROC curve (Fig. 3) provides a visualized depiction 
of the AI algorithm’s performance, we can see the AUC 
measures the entire two-dimensional area underneath 
the empirical ROC curve at all classification thresholds 
from (0,0) to (1,1) was 0.97. For the 600 cases, the AUC 
of the AI algorithm indicates the model is able to demon-
strate high classification performance.

Subgroup Analysis results
Subgroup analysis across different subpopulations was 
also performed assessing the generalizability of the AI 
algorithm’s performance (Table  3). By assessing the AI 
system’s performance against ground truth (GT) for spe-
cific subgroups ensures that the system is reliable and 
effective across a diverse range of patient populations.

The study results indicate that all subpopulations per-
formed well in accurately detecting pleural effusion with 
sensitivity ranging from 0.90 to 1.00 and specificity rang-
ing from 0.92 to 0.99. These findings demonstrate the 
effectiveness of the AI algorithm in assessing pleural effu-
sion in diverse patient populations, regardless of their 
demographic or clinical characteristics.

Figure 4 displays how each subpopulation corresponds 
to an empirical ROC curve, indicating the device’s con-
sistent performance across all subgroups.

Confounding analysis results
Besides the subgroup analysis, radiologists reported 25 
cases accompanied radiologic findings other than pleural 
effusion and 7 cases with image quality issues presented 
in the radiograph. A single case may exist with one or 
more radiologic findings and/or image quality-related 
issues. As shown in Table  4, the AI algorithm’s perfor-
mance was evaluated by comparing it with GT, and cases 
accompanied by radiologic findings showed 15 TP, 9 TN, 

Table 2 Truthers consistency
Kappa value 95% CI p-value

Radiologists1 vs. Radiologists2 0.84 (0.80, 0.89) < 0.0001
Radiologists1 vs. Radiologists3 0.84 (0.80, 0.89) < 0.0001
Radiologists2 vs. Radiologists3 0.89 (0.85, 0.92) < 0.0001

Table 3 Performance of the AI algorithm by each subpopulation
Sensitivity
(95% Wilson CI)

Specificity
(95% Wilson CI)

AUC
(95% De-
Long’s CI)

Overall 0.95 (0.92, 0.97) 0.97 (0.95, 0.99) 0.97 (0.95, 0.99)
Gender
 Female 0.93 (0.87, 0.96) 0.98 (0.94, 0.99) 0.96 (0.92, 0.99)
 Male 0.96 (0.92, 0.98) 0.97 (0.93, 0.99) 0.98 (0.96, 1.00)
Age Group
 18–49 y/o 0.93 (0.79, 0.98) 0.99 (0.95, 1.00) 0.96 (0.90, 1.00)
 50–64 y/o 0.99 (0.95, 1.00) 0.96 (0.90, 0.99) 0.98 (0.95, 1.00)
 Above 65 
y/o

0.93 (0.88, 0.96) 0.97 (0.91, 0.99) 0.96 (0.94, 0.99)

Data Source
US 0.92 (0.87, 0.95) 0.96 (0.91, 0.98) 0.95 (0.92, 0.98)
Taiwan 0.99 (0.96, 1.00) 0.99 (0.96, 1.00) 1.00 (0.99, 1.00)
Manufacturer
 Samsung 
Electronics

0.97 (0.89, 0.99) 0.99 (0.92, 1.00) 1.00 (0.99, 1.00)

 Shimadzu 1.00 (0.95, 1.00) 0.99 (0.94, 1.00) 0.99 (0.98, 1.00)
 Toshiba 0.98 (0.91, 1.00) 0.99 (0.94, 1.00) 1.00 (1.00, 1.00)
 Othersa 0.88 (0.80, 0.93) 0.92 (0.82, 0.96) 0.91 (0.86, 0.96)
Size of Pleural 
Effusion
 Small 0.96 (0.93, 0.98) -
 Moderate 0.90 (0.82, 0.95) -
 Large 1.00 (0.81, 1.00) -
Location 
of Pleural 
Effusion
 Right 0.92 (0.86, 0.95) -
 Left 0.99 (0.94, 1.00) -
 Bilateral 0.97 (0.89, 0.99) -
a Other X-ray manufacturers include Konica Minolta, GE Healthcare, Drtech, 
Canon Inc., Siemens, Oehm und Rehbein GmbH, Philips Medical Systems, 
Swissray, Kodak, Agfa, Fujifilm, and unknown.
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0 FN, and 1 FP. For cases with image quality issues, the 
results were 3 TP, 3 TN, 1 FN, and 0 FP. These results 
demonstrate that the AI algorithm can perform effec-
tively even when faced with possible confounding factors.

Active learning results
As shown in Table  5, we observe an aggregate of 8,053 
chest radiographs available for the training set. With 
the implementation of the AL framework, an iterative 
processing of each data subset revealed the necessity 
for expert annotation in a collection of 549 radiographs, 
which constituted 38.1% of the positive cases. The results 
also indicate that the AL framework pooled a higher per-
centage of small pleural effusion radiographs within the 
positive cohort for expert annotations with 23.2% of the 
pleural effusion positive radiographs being small. Con-
versely, the algorithm identified 740 radiographs within 
the negative cohort that needed expert annotation, rep-
resenting 11.1% of the total negative cases. Overall, a 
total of 1,289 radiographs, 16% of the total training set 
were required for expert annotation. Figure  5 presents 
the performance comparison between the AL frame-
work with continuous pseudo-labeling and traditional 
training methods over the utilization of labeled data. 
The AL approach, supplemented by iterative incorpora-
tion of pseudo-labeled data, achieved a model accuracy 
of 95%. This was accomplished by using 1,289 manually 
annotated radiographs by radiologists and 6,764 pseudo-
labeled radiographs. In contrast, the traditional training 
method, utilizing the entire set of 8,053 labeled samples 
by radiologists, reached a higher model accuracy of 97%. 

The AL strategy demonstrated a gradual increase in accu-
racy in the initial phases, indicative of the strategic selec-
tion of challenging cases for manual annotation. This was 
followed by the inclusion of high-confidence pseudo-
labeled instances, which contributed to refining model 
performance. The traditional training model’s accuracy 
increased more steeply, plateauing at the final accuracy 
percentage upon the inclusion of the complete labeled 
dataset. These results indicate that the AL framework, 
through the use of pseudo-labeling, can achieve near-
comparable performance to traditional training methods 
with fewer manually labeled instances. The AL model’s 
progression reflects an effective use of expert annota-
tions, achieving significant accuracy levels with a com-
bined strategy of manual and pseudo-labeling.

Comparison of CADt algorithms
In this section, as shown in Table  6, we show the com-
parative analysis of our proposed CADt algorithm 
against existing US FDA-approved AI algorithms for the 
detection of pleural effusion. The benchmarks for perfor-
mance metrics include sensitivity, specificity, and AUC. 
As mentioned above, the primary outcomes are to reach 
a sensitivity and specificity of at least 0.8 and an AUC 
of 0.95. Our proposed algorithm reached a sensitivity of 
95%, specificity of 97%, and an AUC of 0.97 meeting per-
formance standards against these existing leading FDA-
approved AI solutions for pleural effusion detection.

Discussion
In this study, we introduced a novel AL framework to 
build a clinical grade AI algorithm aimed at detecting 
pleural effusion in chest radiographs with high perfor-
mance and minimal expert annotation effort. Unlike 
direct comparisons with previous studies, which may 
involve different datasets and tasks, our emphasis is on 
the methodological advancements and the clinical rel-
evance of our approach. Previous works, such as those 
by Singh et al. and Ajmera et al., have contributed valu-
able insights into the application of AI in radiology [27–
28]; however, our approach distinguishes itself through 
the use of an AL and semi-supervised learning strat-
egy that reduces the need for expert-labeled data. This 
novel approach represents a step forward in developing 
clinical-grade AI tools with reduced resource intensity. 
We further used an external multisite data set from the 
U.S. and Taiwan that included multiple different types of 
manufacturers to demonstrate the robust generalization 
capacity of the algorithm.

Our algorithm can interpret full-size high-spatial-
resolution chest radiographs sent directly from any pic-
ture archiving and communication systems (PACS) used 
in the daily clinical practice. The observed results of the 
standalone performance validation study demonstrated 

Fig. 3 The ROC curve of the AI algorithm against the GT (empirical)
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that the AI algorithm by itself, in the absence of any 
interaction with a clinician, can assess pleural effusion in 
chest radiographs with high consistency with U.S. expert 
radiologists. The algorithm demonstrated a high sensi-
tivity and specificity of 0.95 with a 95% CI of [0.92, 0.97] 
and the specificity is 0.97 with a 95% CI of [0.95, 0.99], 
respectively. The algorithm also showed an AUC per-
formance of 0.97 with a 95% DeLong’s CI of [0.95, 0.99]. 

These results show comparable performance against 
other US FDA-approved market ready pleural effusion 
detection software as shown in Table 6]. It is also worth 
noting that our framework was able to produce robust 
performance across different sizes of pleural effusion 
ranging from small to large with an AUC of 0.96, 0.90 and 
1.0 respectively. In comparison against previous studies 
that have only shown single level performances [29–30], 
our current study has shown extensive subgroup analy-
sis to demonstrate robust performance across different 

Table 4 Performance of the AI algorithm by Each Subpopulation
Sensitivity
(95% Wilson CI)

Specificity
(95% Wil-
son CI)

AUROC
(95% De-
Long’s CI)

Radiologic Findingsa 1.00 (0.80, 1.00) 0.90 (0.60, 
0.99)

0.97 (0.90, 
1.00)

Image Quality Issuesb 0.75 (0.30, 0.99) 1.00 (0.44, 
1.00)

0.92 (0.69, 
1.00)

a Cases with radiologic findings include possible confounders as Air-fluid Level, 
Airspace Disease, Atelectasis, Blebs, Cardiomegaly, Fracture, Infiltrate, Mass, 
Nodule, Obstructive Airways Disease, Pleural Effusion, Pneumonia, and Scoliosis
b Cases with image quality issues include possible confounders as Anatomy not 
complete, Artifact present, Field of view issues, and Others

Table 5 Ground truth data (training set) via active learning (AL)
Dataset Available a With AL b Percentage
Pleural Effusion Positive 1438 549 38.1%
 Small 334 23.2%
 Moderate 113 7.9%
 Large 102 7.0%
Pleural Effusion Negative 6615 740 11.1%
Total 8053 1289 16.0%
a Total number of available cases
b Total number of labeled cases that was used via active learning

Fig. 4 The ROC curve of the AI algorithm across all subgroups
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severity levels (small, medium, large), location (right, left, 
bilateral), gender, age groups and manufacturers. One 
of the main limitations of previous studies is the lack of 
performance analysis on potential confounding factors 
and subgroups. This is particularly important as this will 
often affect the AI’s performance if the algorithm is not 
robust enough. The performance across different sub-
populations needs to be of high sensitivity and specific-
ity across each subgroup to be clinically relevant. Other 
potential confounding factors as shown in Table 4, such 
as mass, atelectasis, airspace disease, air-fluid level, 

fracture, pseudotumor, infiltrate, pneumonia, blebs, mili-
ary disease, postoperative change, pulmonary fibrosis 
were also considered and tested and showed that they do 
not systematically affect the algorithm’s performance.

The application of combining active learning and semi-
supervised training via psuedo-labeling in this study 
demonstrated its potential to reduce the expert anno-
tation efforts required for developing clinical-grade AI 
algorithms. By implementing an AL framework experts 
were allowed to focus on reviewing only challenging 
cases selected by the algorithm (16%) while the algorithm 
utilizes pseudo-labels for the remaining training data. 
The strategic utilization of a subset of the dataset for 
expert labeling, supplemented by pseudo-labeled data for 
model training, suggests potential towards more efficient 
AI algorithm development. In addition to reducing anno-
tation efforts, our active learning approach was able to 
identify clinically challenging cases using the uncertainty 
method during the training process. As shown in Fig. 6 
below, several challenging cases such as coexisting air 
and fluid, obscured fluid accumulation due to lung tissue 
injury, and minimal pleural effusion with subtle changes 
in the costophrenic angle were detected as selected 

Table 6 CADt Performance of FDA Approved AI Algorithms [24]
Device Intended 

Use
Modality Sensitivity/Speficity AUC

HealthCXR Pleural 
Effusion

Chest 
X-ray

96/93 0.98

qXR-PTX-PE Pleural 
Effusion

Chest 
X-ray

96/94 0.98

Lunit CXR 
Triage

Pleural 
Effusion

Chest 
X-ray

88/90 0.96

Our 
proposed 
algorithm

Pleural 
Effusion

Chest 
X-ray

95/97 0.97

Fig. 5 Model performance over labeled data via AL vs. traditional learning
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candidates for confirmation and annotation. These find-
ing suggests that active learning can help focus radi-
ologist’s attention on challenging cases that may require 
additional clinical scrutiny. Our study provides evidence 
that active learning is an effective strategy for identifying 
challenging cases that can be particularly useful in clini-
cal practice.

One of the main limitations of our study was it was 
retrospective in nature and thus all radiographs were de-
identified without any relevant clinical information or 
patient history for experts to consider. In a real clinical 
setting, clinicians would be able to examine the patient 
and obtain detailed history to identify the area of concern 
before or during looking at the radiographs, thus improv-
ing meaningful clinical interpretation.

In conclusion, this study introduces a novel framework 
for developing CADt tools via AL and semi-supervised 
learning, highlighting a reduction in the need for exten-
sive expert radiologist annotation while ensuring per-
formance that is on par with existing FDA-approved 
solutions. Instead of drawing direct comparisons with 
previous methods based on different datasets and tasks, 
our focus has been on the methodological advancements 
and the practical benefits these bring to clinical settings. 
The clinical implications of our approach extend beyond 
achieving high-performance metrics. By demonstrating 

that a high-quality algorithm can be developed with less 
expert annotation, we present a method that not only 
optimizes the use of radiological expertise by concen-
trating on more challenging cases identified through the 
AL process but also significantly reduces the resources 
and time typically required for training clinical-grade AI 
tools. By prioritizing the reduction of expert burden and 
demonstrating a path to maintain diagnostic accuracy, 
our approach offers an alternative approach in develop-
ing practical clinical grade AI algorithms.
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