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Abstract
Background Accurate preoperative identification of ovarian tumour subtypes is imperative for patients as it enables 
physicians to custom-tailor precise and individualized management strategies. So, we have developed an ultrasound 
(US)-based multiclass prediction algorithm for differentiating between benign, borderline, and malignant ovarian 
tumours.

Methods We randomised data from 849 patients with ovarian tumours into training and testing sets in a ratio of 
8:2. The regions of interest on the US images were segmented and handcrafted radiomics features were extracted 
and screened. We applied the one-versus-rest method in multiclass classification. We inputted the best features into 
machine learning (ML) models and constructed a radiomic signature (Rad_Sig). US images of the maximum trimmed 
ovarian tumour sections were inputted into a pre-trained convolutional neural network (CNN) model. After internal 
enhancement and complex algorithms, each sample’s predicted probability, known as the deep transfer learning 
signature (DTL_Sig), was generated. Clinical baseline data were analysed. Statistically significant clinical parameters 
and US semantic features in the training set were used to construct clinical signatures (Clinic_Sig). The prediction 
results of Rad_Sig, DTL_Sig, and Clinic_Sig for each sample were fused as new feature sets, to build the combined 
model, namely, the deep learning radiomic signature (DLR_Sig). We used the receiver operating characteristic (ROC) 
curve and the area under the ROC curve (AUC) to estimate the performance of the multiclass classification model.

Results The training set included 440 benign, 44 borderline, and 196 malignant ovarian tumours. The testing set 
included 109 benign, 11 borderline, and 49 malignant ovarian tumours. DLR_Sig three-class prediction model had 
the best overall and class-specific classification performance, with micro- and macro-average AUC of 0.90 and 0.84, 
respectively, on the testing set. Categories of identification AUC were 0.84, 0.85, and 0.83 for benign, borderline, and 
malignant ovarian tumours, respectively. In the confusion matrix, the classifier models of Clinic_Sig and Rad_Sig could 
not recognise borderline ovarian tumours. However, the proportions of borderline and malignant ovarian tumours 
identified by DLR_Sig were the highest at 54.55% and 63.27%, respectively.
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Introduction
Ovarian tumours are of various histological types, 
including benign, borderline, and malignant lesions [1–
3]. Benign tumours have good prognosis and are treated 
conservatively and with regular follow-up observations 
[2, 4]. Epithelial hyperplasia and nuclear atypia are more 
prominent in borderline ovarian tumours (BOTs) than 
in benign ovarian tumours; however, BOTs have no stro-
mal invasion, unlike ovarian malignancies [5]. BOTs have 
good prognosis, with a 10-year survival rate of > 95% for 
stages I, II, and III [6]. The primary treatment for BOTs 
is surgical intervention; however, more than one-third 
of BOTs cases occur in women aged under 40 years who 
may want to conceive in the future [1]. Therefore, priori-
tising fertility preservation in young women desiring to 
have children is crucial. Patients with malignant ovarian 
tumours should be referred to gynaecologic oncologists 
for further diagnosis and treatment, and depending on 
the stage of cancer, debulking surgery and chemotherapy 
may be considered [7]. Different types of ovarian tumours 
have distinct clinical and pathological characteristics, 
treatment strategies, and prognoses. The early detec-
tion and treatment of ovarian malignancies can improve 
patient outcomes [8]. Therefore, the preoperative iden-
tification of the nature of ovarian tumours is critical for 
patients and can guide physicians in developing individu-
alised and precise management plans.

Ultrasonography, especially transvaginal, is considered 
the primary method for evaluating adnexal tumours [9, 
10]. Currently, subjective assessment by ultrasound (US) 
experts is a relatively good method of distinguishing the 
nature of ovarian tumours. However, US specialists are 
few, and differences in subjective diagnoses among US 
physicians with different experience levels exist [11, 12]. 
Therefore, objectively and quantitatively analysing the 
various imaging features that may reveal the potential 
biological characteristics of tumours in a reproducible 
manner is necessary.

Radiomics is an emerging field of quantitative imag-
ing that can significantly impact personalised medicine. 
They can mine quantitative features from medical images 
using high-throughput methods, which are then trans-
formed into objective and structured data through com-
plex algorithms and applied to clinical decision support 
systems to improve diagnosis, prognosis assessment, and 
prediction accuracy [13, 14]. Previous studies on com-
puted tomography (CT)/magnetic resonance imaging 

(MRI)/US-based radiomics for differentiating benign 
and malignant ovarian tumours achieved satisfactory 
diagnostic results [15–18]. However, radiomic features 
are predefined, including morphology, intensity, texture, 
and wavelet features, which are superficial and low-order, 
and cannot represent the heterogeneity of the entire 
tumour [19, 20]. Therefore, to accurately classify ovarian 
tumours, studying their deeper- and higher-level features 
is necessary.

Deep learning (DL) is a branch of machine learning 
(ML) that allows computing models with multiple pro-
cessing layers to learn data representations at numerous 
abstraction levels [21]. The convolutional neural net-
work (CNN) is the most commonly used DL architec-
ture type in medical image analysis [22]. Suggestions that 
CNN-extracted features can provide various high-order 
features of images and apply them to specific clinical out-
comes exist [20]. Successful application of DL requires a 
large number of training sets. However, medical data sets 
are often limited in number. Many practical applications 
currently use CNNs pre-trained on ImageNet, known as 
transfer learning (TL), to replace DL [23, 24]. Research 
using deep transfer learning (DTL) to classify benign 
and malignant ovarian tumours has been successful [11, 
12, 25]. However, BOTs were categorised as malignant 
ovarian tumours for statistical analysis. Combining DL 
classification networks with traditional hand-crafted 
radiomics frameworks is a new development [26, 27]. 
Few reports exist on US-based combined DL radiomics 
(DLR) models as multi-classification prediction models 
for classifying ovarian tumours as benign, borderline, or 
malignant. We hypothesised that DLR could differenti-
ate between benign, borderline, and malignant ovarian 
tumours. Hence, this study aimed to develop an US-
based DLR to identify benign, borderline, and malignant 
ovarian lesions.

Materials and methods
Study design and participants
We enrolled 849 patients with ovarian tumours con-
firmed by histopathological examination after surgical 
removal from July 2014 to October 2022. The inclusion 
criteria were: (a) complete US examination within 1 
month before surgery and (b) a clear and definite US 
image of the target lesion. The exclusion criteria were: (a) 
poor image quality, (b) absent or incomplete US and clin-
ical data, (c) pregnancy, (d) history of tumours in other 

Conclusions The three-class prediction model of US-based DLR_Sig can discriminate between benign, borderline, 
and malignant ovarian tumours. Therefore, it may guide clinicians in determining the differential management of 
patients with ovarian tumours.
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parts of the body and ovarian metastatic cancer, (e) pre-
vious treatment before US examination or surgery, and 
(f ) pathological diagnosis obtained through biopsy and 
uncertain pathology results. A flowchart of the partici-
pants is shown in Fig. 1.

The study population was categorised into different 
labels based on pathological results, with benign ovar-
ian tumours labelled as “class 0”, BOT as “class 1”, and 
malignant ovarian tumours as “class 2”. Participant data 
was randomised into training and testing sets in a ratio of 
8:2 using Python’s statistical package. Our data random 
partitioning adopted a stratified method to handle imbal-
anced data between the training and testing sets; hence, 
the proportion of patients with benign, borderline, and 
malignant ovarian tumours in the total study population, 
training set, and testing set was similar. No data overlap 
occurred between the training and testing sets, avoiding 
the repeated use of data from the same patient [28].

The training set was used to learn the parameters and 
build the model, whereas the testing set was used to eval-
uate the generalisability of the selected model and pre-
vent overfitting.

Collecting clinical parameters
Preoperative clinical data of all patients, including age, 
menopausal status, height, weight, body mass index 
(BMI), carbohydrate antigen 125 (CA125), red blood cell 
count (RBC), white blood cell count (WBC), neutrophil 
count (N), lymphocyte count (L), monocyte count (M), 
platelet count (PLT), and haemoglobin were obtained 
from the patient’s electronic medical records. BMI and 
some inflammation-related risk factors, such as the neu-
trophil-to-lymphocyte ratio (NLR), derived neutrophil-
to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio 
(PLR), lymphocyte-to-monocyte ratio (LMR), and sys-
temic immune-inflammation index (SII), were calculated 
using the following simple formulas:
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Fig. 1 Inclusion and exclusion criteria for patients with ovarian tumours for the training and testing sets. Abbreviation: BOTs = borderline ovarian tumours
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Ultrasound data acquisition
All participants underwent transvaginal ultrasonogra-
phy whenever possible. If a mass was too large to be fully 
displayed on transvaginal ultrasonography, it could be 
supplemented with a transabdominal US. Transrectal or 
transabdominal ultrasonography could be performed if 
a patient was unsuitable for transvaginal ultrasonogra-
phy. The following US equipment was used in the study: 
GE Voluson E10, GE Voluson E8, GE Healthcare (GE 
Medical Systems, Zipf, Austria), and Mindray Resona 
R9 (Mindray Bio-Medical Electronics Co., Ltd., China), 
with RIC5-9-D, V11-3HU transvaginal US probes, and 
C1-5-D and SC6-1U abdominal US probes. Recorded 
US semantic features included: maximum diameter of 
the lesion (≤ 50, 50–100, and ≥ 100  mm), characteris-
tics of the mass (cystic, cystic-solid mixed, solid), colour 
Doppler score (1, no blood flow signal; 2, low blood flow 
signal; 3, moderate blood flow signal; 4, rich blood flow 
signal), laterality of the mass (unilateral or bilateral), and 
ascites (present or absent). If a patient had more than one 
ovarian mass, we selected the mass with the most com-
plex morphology or the largest for further assessment 
[12, 29, 30].

The specialized assessment of ultrasound images
Initially, the ultrasound image was assessed by Doc-
tor A, a seasoned gynecology and obstetrics ultrasound 
specialist with ten years of professional experience, who 
provided the initial diagnosis. Subsequently, Doctor B, 
another gynecology and obstetrics ultrasound expert 
with over 15 years of experience, confirmed the diagno-
sis. In cases of discordant opinions, a senior expert in 
gynecology and obstetrics ultrasound with more than 
two decades of experience was consulted, leading to a 
consensus through collaborative discussion. These doc-
tors were unaware of the patient’s clinical and biochemi-
cal indicators or pathological results.

Image pre-processing and regions of interest (ROI) 
segmentation
The grey-level ranges of two-dimensional images 
obtained using different US devices vary significantly, and 
the voxel spacing of images obtained using different US 

devices are typically different. To address these problems, 
we employed a fixed-resolution resampling method.

The US images were imported into the ITK-SNAP 
3.8.0 software (http://www.itksnap.org) for manual ROI 
segmentation. Segmentation of all ROI was completed 
by A (an US expert with > 10 years of experience) and 
confirmed by B (an US expert with > 15 years of experi-
ence). When there were differences in opinion, a senior 
physician (an US expert with > 20 years of experience) 
was consulted for joint decision-making. To ensure the 
robustness and repeatability of the extracted radiomics 
features, we randomly selected 50 US images from the 
dataset two weeks later, in which A re-delineated the 
ROIs and C (an US expert with 12 years of experience) 
independently delineated the ROI simultaneously. All the 
US experts were blinded to the clinical and pathological 
results of the study population.

For DTL, the slice of the US image with the largest 
tumour area was trimmed to represent each patient. The 
grey values were normalised to the range [-1, 1] using a 
min-max transformation. Then, each cropped subregion 
US image was resized to 224 × 224 by the nearest inter-
polation method and saved as a “.png” file to meet the 
requirements for input into a CNN model.

Hand-crafted radiomics feature extraction and selection
We employed PyRadiomics (http://pyradiomics.
readthedocs.io) to extract the handcrafted radiomic 
features. Subsequently, Z-score normalisation was per-
formed to eliminate differences in the value scales of the 
extracted features.

A total of 1476 handcrafted radiomics features were 
extracted from tasks 1 and 2, including the first-order 
features, shape features, gray-level dependence matrix 
(GLDM), gray-level size zone matrix (GLSZM), gray-
level run length matrix (GLRLM), and gray-level co-
occurrence matrix (GLCM). The number and proportion 
of handcrafted radiomics features are presented in Fig. 2. 
The P-values for all handcrafted features are shown in 
Fig. 3.

First, we retained hand-crafted radiomic features with 
intra-/inter-class correlation coefficient > 0.8, to ensure 
the robustness and repeatability of these features. Only 
1,444 features with P < 0.05 after a T- or Mann–Whitney 
U-test were retained. Subsequently, spearman correlation 
analysis was used to calculate the correlation between 
features. A feature with a correlation coefficient of more 
than 0.9 between any two features is retained; thus, using 
a greedy recursive deletion strategy to maintain the fea-
tures strongly correlated with the predicted target, 295 
features were retained. Finally, least absolute shrinkage 
and selection operator (LASSO) regression algorithms 
were used for feature selection. Depending on the regula-
tion weight λ, LASSO shrinks all regression coefficients 

http://www.itksnap.org
http://pyradiomics.readthedocs.io
http://pyradiomics.readthedocs.io
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towards zero and sets the coefficients of the irrelevant 
features precisely to zero. We employed 10-fold cross-
validation with the minimum criteria to determine the 
optimal λ, where the final value of λ (0.016768) yielded 
the minimum cross-validation error. We retained 53 
non-zero-coefficient features as optimal features.

The deep transfer learning procedure
We used DTL, a CNN model pre-trained on the Ima-
geNet dataset, to avoid overfitting owing to the limited 
size of the training dataset.

Data augmentation is often required to improve DTL’s 
prediction performance and generalisation ability in 
image classification because of imbalanced or insufficient 
data. Hence, we utilised horizontal flipping and random 

cropping for data augmentation, which helped increase 
the sample size and enhance the model performance.

To better perform the generalisation, we carefully set 
the learning rate. In this study, we adopted a cosine-decay 
learning rate algorithm. The learning rates are presented 
in Additional file 1.

Signature building
The baseline clinical data were analysed in the training 
set. Clinical parameters and ultrasonic semantic features 
with P < 0.05 were selected, and spearman correlation 
analysis was used to determine the linear relationship 
between these parameters. Parameters without a sig-
nificant linear correlation were inputted into the sup-
port vector machine model to build clinical signature 
(Clinic_Sig).

Fig. 2 The proportion of hand-crafted radiomics features. Abbreviation: GLDM = grey-level dependence matrices, GLSZM = grey-level size zone matrices, 
GLRLM = grey-level run length matrices, GLCM = grey-level co-occurrence matrices
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After the LASSO regression feature screening, the opti-
mal features were input into the Light Gradient Boosting 
Machine (LightGBM) model to construct radiomic signa-
ture (Rad_Sig).

After the US image of the mass with the largest sec-
tion was inputted into a ResNet50 model, the predic-
tion probability of each sample was used as deep transfer 
learning (DTL_Sig). Gradient-weighted class activation 
mapping (Grad-CAM) was applied to visualise the inter-
nal network algorithm and explain the decision basis of 
the CNN model.

We fused the prediction results of Rad_Sig, DTL_Sig, 
and Clinic_Sig for each sample as new features, put them 
into the Gradient Boosting model, and constructed a 
combined model on the training set, namely deep learn-
ing radiomic signature (DLR_Sig).

Model assessment
In this study, we employed a one-versus-rest method, 
which is often applied in multiclass classification. We 
evaluated the model’s performance based on receiver 

operating characteristic (ROC) curves and the area under 
the ROC curve (AUC). We used Precision, Recall, F1 
score, macro-average, micro-average, and weighted aver-
age to assess the class of discrimination of one-versus-
rest for the ovarian tumours of each group and the whole. 
A confusion matrix was used to analyse the errors in the 
model.

Statistical analysis
Statistical analysis was performed using Python (https://
www.python.org/). Normally distributed variables are 
reported as mean ± standard deviation, whereas non-nor-
mally distributed variables are reported as median (inter-
quartile range). Categorical variables are expressed as 
frequencies (percentages). One-way analysis of variance 
was used to compare the three data groups with nor-
mality and homogeneity criteria, and a rank-sum non-
parametric test for multiple independent samples was 
adopted for variables with no normality and homogene-
ity. Categorical data were analysed using the chi-square 

Fig. 3 All hand-crafted radiomics features’ corresponding P-value results. Abbreviation: GLDM = grey-level dependence matrices, GLSZM = grey-level size 
zone matrices, GLRLM = grey-level run length matrices, GLCM = grey-level co-occurrence matrices
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(χ2) test. A two-sided P<0.05 was considered statistically 
significant.

Results
Patient characteristics
We included 849 patients in this study. Among them, 549 
(64.66%), 55 (6.48%), and 245 (28.86%) had benign, bor-
derline, and malignant ovarian tumours, respectively. The 
proportions of benign, borderline, and malignant ovarian 
tumours in the entire study group, training set, and test-
ing set were approximately the same. The baseline char-
acteristics are shown in Table 1.

The ultrasound expert assessment the benign, borderline, 
and malignant ovarian tumours
Ultrasound specialists demonstrated a high level of 
accuracy in distinguishing between benign and malig-
nant ovarian tumours, with rates of 95.80% and 82.80%, 
respectively. Conversely, the accuracy in identifying bor-
derline ovarian tumours was notably lower at 34.50% 
(Table 2).

The confusion matrix of the three-class classification 
prediction model
We used the confusion matrix to understand where the 
classifier model made the classification errors and their 
proportions (Fig. 4; Table 3). These multiclass classifica-
tion prediction models had a high rate of correctly dis-
tinguishing benign ovarian tumours, 89.91%, 88.99%, 
86.24%, and 82.57%, respectively). Clinic_Sig and Rad_Sig 
showed relatively poor accuracy in determining malig-
nant ovarian tumours (16.33% and 38.78%, respectively). 
The classifier models Clinic_Sig and Rad_Sig cannot rec-
ognise BOT. The proportion of BOT identified by DLR 
was the highest at 54.55%.

Classification performance
The DLR_Sig three-class prediction model had the best 
overall and class-specific classification performance, with 
the micro/macro average AUC 0.90 and 0.84 on the test-
ing set, respectively. The categories of identification AUC 
were 0.84 for benign, 0.85 for borderline, and 0.83 for 
malignant ovarian tumours (Fig. 5; Table 4).

Application of grad-CAM
Grad-CAM, which can produce a coarse localisation map 
highlighting the critical regions for classification targets, 
is proposed as a method for visualising the decisions of 
CNN models. The red areas of the heat map are crucial 
references for model decision-making [31]. The site of 
concern for US diagnosis is consistent with the area of 
concern for CNN decision making (Fig. 6).

In Fig. 6a, b, and c, there was a solid low-echoic mass 
in one patient’s pelvis, 100  mm in diameter. Rich blood 

flow signals were observed in and around the mass, with 
a CA125 of 8.67 U/ml. An US expert suggested that the 
patient had a malignant ovarian tumour. However, DTL_
Sig predicted benign lesions with a probability of 97.35%. 
Pathological results showed that it was a benign theca 
cell tumour. The prediction of DTL_Sig was highly con-
sistent with the pathological diagnosis.

In Fig. 6d, e, and f, there was a cystic-solid mixed mass 
in a patient’s pelvis, which was 112 mm in diameterand 
had a CA125 level of 206 U/ml. An US expert suggested 
that the patient had a malignant ovarian tumour. How-
ever, DTL_Sig indicated a BOT with an 85.98% probabil-
ity. A pathological diagnosis of BOT was made. DTL_Sig 
prediction was highly consistent with the pathological 
diagnosis.

Discussion
The accurate prediction of the category of ovarian 
tumours is critical for patient-centred care. Studies on 
the multiclass classification of DLR to classify ovar-
ian tumours are relatively scarce. In this study, we con-
structed four multiclassification prediction models 
to classify benign, borderline, and malignant ovarian 
tumours. We found that the DLR prediction model had 
the optimum ability to classify ovarian tumours and gen-
eralise the testing set.

Ultrasonography is the primary method for screening 
ovarian tumours. Serum tumour markers are essential 
for discovering and treating ovarian cancer, and CA125 
is the most important biomarker for evaluating ovarian 
cancer [32]. Inflammation is vital in the development 
and progression of ovarian cancer [33]. Therefore, we 
collected US semantic features, serum tumour markers, 
and related inflammatory factors from the study popula-
tion. These US semantic features and clinical parameters 
are typically obtained during routine examinations and 
do not add additional burden to the patient. We selected 
some semantic elements, serum tumour markers, and 
related inflammatory factors to construct Clinic_Sig. The 
Clinic_Sig three-class prediction model had poor overall 
and class-specific classification performance and could 
not predict BOT; the precision, recall, and F1 scores were 
all zero.

The US examinations were subjective. US experts have 
higher diagnostic accuracy than less experienced doctors; 
however, US experts are few [11]. Recently, radiomics has 
become a powerful new method for quantifying features 
from medical images, including potential pathophysi-
ological information of reference cancer tissues [34]. 
Some studies have used MRI/CT/US-based radiomics 
to differentiate between benign and malignant ovarian 
tumours with higher diagnostic performance [15, 35, 36]. 
However, these studies did not mention the classification 
of BOT. Qi et al. [16] established and validated US-based 
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Training set (n = 680) Testing set (n = 169)
Benign 
tumour(n = 440)

BOTs(n = 44) Malignant 
tumour(n = 196)

P Benign 
tumour(n = 109)

BOTs(n = 11) Malignant 
tumour(n = 49)

P

age (y) 37.07 ± 12.38 42.16 ± 13.71 49.63 ± 13.59 < 0.001* 38.70 ± 14.13 39.64 ± 14.66 48.47 ± 10.41 < 0.001*

Height (m) 1.58 ± 0.06 1.58 ± 0.058 1.56 ± 0.06 < 0.001* 1.57 ± 0.06 1.58 ± 0.03 1.56 ± 0.04 0.110

Weight (kg) 54.67 ± 9.54 56.51 ± 8.49 55.16 ± 9.01 0.468 55.85 ± 9.25 55.11 ± 11.13 54.68 ± 9.52 0.467

BMI 21.95 ± 3.56 22.68 ± 3.25 22.65 ± 3.29 0.014* 22.53 ± 3.58 22.12 ± 3.97 22.46 ± 3.73 0.882

RBC_count 
(1012/L)

4.55 ± 0.53 4.46 ± 0.41 4.36 ± 0.57 < 0.001* 4.31 ± 0.55 4.41 ± 0.55 4.30 ± 0.54 0.975

WBC_count 
(109/L)

7.03 ± 2.00 6.80 ± 2.20 7.79 ± 2.58 < 0.001* 7.26 ± 2.77 6.20 ± 0.94 7.11 ± 1.74 0.623

Neutrophil_
count (109/L)

4.18 ± 1.788 4.31 ± 2.16 5.22 ± 2.44 < 0.001* 4.52 ± 2.62 3.18 ± 0.89 4.72 ± 1.89 0.780

Lymphocyte_
count (109/L)

2.12 ± 0.62 1.87 ± 0.63 1.78 ± 0.74 < 0.001* 2.06 ± 0.70 2.32 ± 0.74 2.03 ± 1.15 0.906

Monocyte_count 
(109/L)

0.63 ± 0.28 0.55 ± 0.25 0.64 ± 0.28 0.852 0.49 ± 0.19 0.52 ± 0.15 0.51 ± 0.23 0.564

PLT_count 
(109/L)

296.91 ± 72.08 275.25 ± 56.68 345.37 ± 115.83 < 0.001* 282.19 ± 65.22 275.09 ± 82.76 340.04 ± 89.81 < 0.001*

Hemoglobin(g/L) 124.44 ± 18.09 123.34 ± 14.20 117.22 ± 16.54 < 0.001* 119.75 ± 16.99 117.18 ± 21.75 114.90 ± 16.21 0.097

NLR 2.20 ± 1.59 2.91 ± 2.73 3.51 ± 2.43 < 0.001* 2.72 ± 3.17 1.56 ± 0.75 2.78 ± 1.91 0.991

PLR 154.04 ± 83.09 168.43 ± 94.34 228.71 ± 137.61 < 0.001* 151.78 ± 64.23 130.95 ± 53.74 200.41 ± 118.78 0.002*

LMR 3.82 ± 1.62 3.87 ± 1.63 3.40 ± 2.60 0.016* 4.51 ± 1.69 4.72 ± 1.96 4.29 ± 1.76 0.510

dNLR 1.57 ± 1.14 1.76 ± 2.50 5.61 ± 47.72 0.073 1.88 ± 1.66 1.15 ± 0.51 1.99 ± 1.53 0.799

SII 663.44 ± 534.53 807.60 ± 843.56 1258.88 ± 1026.20 < 0.001* 752.95 ± 916.38 430.17 ± 211.21 969.97 ± 779.50 0.190

Menopausal_
state, n (%)

< 0.001* < 0.001*

Premenopausal 383(87.05%) 28(63.64%) 102(52.04%) 90(82.57%) 9(81.82%) 25(51.02%)

Menopause 57(12.95%) 16(36.36%) 94(47.96%) 19(17.43%) 2(18.18%) 24(48.98%)

Tumour_diam-
eter (mm), n (%)

< 0.001* 0.001*

≤ 50 68(15.45%) 6(13.64%) 12(6.12%) 21(19.27%) 1(9.09%) 1(2.04%)

50–100 293(66.59%) 18(40.91%) 79(40.31%) 59(54.13%) 5(45.45%) 20(40.82%)

≥ 100 79(17.95%) 20(45.45%) 105(53.57%) 29(26.61%) 5(45.45%) 28(57.14%)

Mass_character-
isticn, n (%)

< 0.001* < 0.001*

Cystic 314(71.36%) 18(40.91%) 13(6.63%) 79(72.48%) 4(36.36%) 1(2.04%)

Cystic-solid 
mixed

102(23.18%) 21(47.73%) 89(45.41%) 23(21.10%) 6(54.55%) 30(61.22%)

Solid 24(5.45%) 5(11.36%) 94(47.96%) 7(6.42%) 1(9.09%) 18(36.73%)

colour_score, 
n (%)

< 0.001* < 0.001*

1 401(91.14%) 8(18.18%) 11(5.61%) 83(76.15%) 4(36.36%) 2(4.08%)

2 35(7.95%) 24(54.55%) 77(39.29%) 21(19.27%) 7(63.64%) 22(44.90%)

3 4(0.91%) 10(22.73%) 91(46.43%) 4(3.67%) 0 25(51.02%)

4 0 2(4.55%) 17(8.67%) 1(0.92%) 0 0

Ascites, n (%) < 0.001* < 0.001*

No 437(99.32%) 39(88.64%) 138(70.41%) 107(98.17%) 11(100.00%) 40(81.63%)

Yes 3(0.68%) 5(11.36%) 58(29.59%) 2(1.83%) 0 9(18.37%)

Tumour_side, 
n (%)

< 0.001* 0.072

Unilateral 379(86.14%) 42(95.45%) 124(63.27%) 99(90.83%) 9(81.82%) 38(77.55%)

Bilateral 61(13.86%) 2(4.55%) 72(36.73%) 10(9.17%) 2(18.18%) 11(22.45%)

CA125_level (U/
ml), n (%)

< 0.001* < 0.001*

≤ 35 304(69.09%) 27(61.36%) 46(23.47%) 80(73.39%) 6(54.55%) 14(28.57%)

Table 1 Training and testing sets of clinical parameters and semantic features of ultrasound
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radiomics models to discriminate between benign, bor-
derline, and malignant serous ovarian tumours and 
provided preoperative diagnostic information to differen-
tiate the nature of ovarian tumours. However, this was a 
binary classification study. In our research, the Rad_Sig 
three-class prediction model could not predict BOT, and 
the precision, recall, and F1 scores were all zero.

DL is becoming increasingly essential for image pat-
tern recognition [21]. Considering the limited scale of 
medical datasets, we used TL to replace DL. TL is ben-
eficial because it improves the performance of a model 
built on small samples by utilising the knowledge learned 
in similar classification tasks [28]. Gao et al. [25] and 
Christiansen et al. [11] developed a DTL model to iden-
tify benign and malignant ovarian tumours, equivalent 
to the diagnostic level of an US specialist. Chen et al. 
[12] developed DTL algorithms to distinguish malignant 
from benign ovarian tumours, comparable to expert sub-
jective and ovarian adnexal reporting and data system 
assessments. However, they classified BOT as malig-
nant ovarian tumours for statistical analysis. We used 
models pre-trained on ImageNet Resnet50 [11, 37]. The 
DTL_Sig three-class prediction model had good overall 
and class-specific classification performance, with the 
micro/macro average AUC 0.89 and 0.85 on the test set, 
respectively. Categories of identification AUC were 0.87 
for benign, 0.82 for borderline, and 0.84 for malignant 
ovarian tumours. Although DTL performs well in various 
classification prediction tasks, it is a black-box algorithm 

that lacks interpretability, which restricts its application 
[31, 38]. Grad-CAM is employed as a method of depict-
ing the decision-making of DL. In our study, as shown in 
Fig. 6, the site of concern for US experts making the diag-
nosis was consistent with the area of concern for CNN 
decision-making using Grad-CAM, and the DTL_Sig 
predictions were highly compatible with the pathological 
diagnosis results.

The combination of traditional manual radiomics and 
DTL algorithms, namely DLR, can effectively improve 
the accuracy and reliability of model predictions. It is 
currently a popular topic in ML for tumour research. 
Many studies [20, 38–40] show that the DLR model has a 
better prediction efficacy than Rad_Sig or DTL_Sig alone. 
The fusion process of data between traditional radiomics 
and DTL includes the fusion of features and decision lev-
els, and the fusion of features often leads to overfitting 
because of many features [38]. We constructed a com-
bined model for the training set by fusing the predicted 
probabilities of Clinic_Sig, Rad_Sig, and DTL_Sig for 
each sample. The combined three-class prediction model, 
DLR_Sig, had the best overall and class-specific classifi-
cation performance, with the micro/macro average AUC 
0.90 and 0.84 on the testing set, respectively. Categories 
of identification AUC were 0.84 for benign, 0.85 for bor-
derline, and 0.83 for malignant ovarian tumours. The 
combined three-class prediction model performance for 
predicting BOT was the best, and the categories of iden-
tification AUC, Precision, Recall, F1 score, and accuracy 
had the highest performances of 0.85, 42.86%, 54.55%, 
57.14%, and 93.31%, respectively. The prevalence of BOTs 
predicted by DLR_Sig (54.55%) exceeded that deter-
mined by ultrasound experts (34.50%).

This study had limitations. First, this was a retrospec-
tive single-centre study with a small sample size. Larger 
prospective and multicentre studies are required to 
evaluate the applicability of predictive models in clinical 
practice. Second, owing to the strict inclusion and exclu-
sion criteria for data in this study, bias could have been 
introduced in the model’s training. Thirdly, in this study, 
we extracted features from two-dimensional US images. 
In future studies, we will include other modalities such as 
colour Doppler flow imaging, spectral Doppler imaging, 
and contrast-enhanced US to provide more predictive 

Table 2 The expert assessment the ultrasound images
Histopathological diagnosis Sum
Benign 
tumour 
(n, Ac%)

BOT (n, 
Ac%)

Malig-
nant 
tumour 
(n, Ac%)

US expert 
examiners

Benign tu-
mour (n, Ac%)

505 
(95.80%)

10 12 527

BOTs (n, Ac%) 24 19 
(34.50%)

12 55

Malignant 
tumour (n, 
Ac%)

20 26 221 
(82.80%)

267

Sum 549 55 245 849
US, ultrasound; Ac, Accuracy; BOT, borderline ovarian tumour

Training set (n = 680) Testing set (n = 169)
Benign 
tumour(n = 440)

BOTs(n = 44) Malignant 
tumour(n = 196)

P Benign 
tumour(n = 109)

BOTs(n = 11) Malignant 
tumour(n = 49)

P

>35, ≤ 200 115(26.14%) 11(25.00%) 51(26.02%) 26(23.85%) 4(36.36%) 13(26.53%)

>200, <500 16(3.64%) 2(4.55%) 34(17.35%) 2(1.83%) 0 8(16.33%)

≥ 500 5(1.14%) 4(9.09%) 65(33.16%) 1(0.92%) 1(9.09%) 14(28.57%)
BOTs: borderline ovarian tumours; BMI: body mass index; RBC: red blood cell; WBC: white blood cell; NLR: neutrophil-to-lymphocyte ratios; PLR: platelet-to-
lymphocyte ratios; LMR: lymphocyte-to-monocyte ratios; dNLR: derived neutrophil-to-lymphocyte ratios; SII: systemic immune-inflammation index; CA125: 
carbohydrate antigen 125; *: P<0.05

Table 1 (continued) 
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information. Lastly, ROI delineation and cropping of the 
top section of the tumour represented only one slice of 
the lesion and could not describe the heterogeneity of the 

entire tumour. In the future, we plan to store dynamic 
images of the whole tumour and input them into ML to 
obtain more comprehensive information.

Fig. 4 Confusion matrix of three-class classification results based on the test set. (4a) Clinic_Sig; (4b) Rad_Sig; (4c) DTL_Sig; (4d) DLR_Sig. Class 0: benign 
ovarian tumours; class 1: BOT; class 2: malignant ovarian tumours. LightGBM, Light Gradient Boosting Machine
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Table 3 The error analysis of the three-class classification prediction model
Signature Real label class Prediction sum

Benign ovarian tumour BOT Malignant ovarian tumour

Clinic_Sig Real label Benign ovarian tumour 98(89.91%) 0(0%) 11(10.09%) 109

BOT 11(100%) 0(0%) 0(0%) 11

Malignant ovarian tumour 41(83.67%) 0(0%) 8(16.33%) 49

sum 150 0 19 169

Rad_Sig Real label Benign ovarian tumour 97(88.99%) 0(0%) 12(11.01%) 109

BOT 6(54.55%) 0(0%) 5(45.45%) 11

Malignant ovarian tumour 30(61.22%) 0(0%) 19(38.78%) 49

sum 133 0 36 169

DTL_Sig Real label Benign ovarian tumour 94(86.24%) 1(0.92%) 14(12.84%) 109

BOT 4(36.36%) 4(36.36%) 3(27.28%) 11

Malignant ovarian tumour 14(28.58%) 6(12.24%) 29(59.18%) 49

sum 112 11 46 169

DRL_Sig Real label Benign ovarian tumour 90(82.57%) 2(1.83%) 17(15.60%) 109

BOT 4(36.36%) 6(54.55%) 1(9.09%) 11

Malignant ovarian tumour 12(24.49%) 6(12.24%) 31(63.27%) 49

sum 106 14 49 169
Clinic_Sig: clinical signature; Rad_Sig: radiomics signature; DTL_Sig: deep transfer learning signature; DLR_Sig: deep learning radiomic signature; BOT: Borderline 
ovarian tumour
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Fig. 5 Three-class (one-vs-rest) ROC of the test set. (5a) Clinic_Sig; (5b) Rad_Sig; (5c) DTL_Sig; (5d) DLR_Sig. Class 0: benign ovarian tumours; class 1: BOT; 
class 2: malignant ovarian tumours. Micro- and macro-average ROC indicated the overall distinguishing ability of the three-class classification. LightGBM, 
Light Gradient Boosting Machine
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Table 4 Overall and class-specific classification performance
AUC Precision (%) Recall (%) F1 Score (%) Acc (%)

Clinic_Sig Benign ovarian tumour 0.68 65.33 89.91 75.68 62.72

BOT 0.40 0.00 0.00 0.00 93.49

Malignant ovarian tumour 0.73 42.11 16.33 25.40 69.23

micro-average 0.83 62.72 62.72 62.72 62.72

macro-average 0.61 35.81 35.41 33.69 75.15

weighted-average 54.35 62.73 48.81 66.61

Rad_Sig Benign ovarian tumour 0.75 72.93 88.99 80.17 71.60

BOT 0.62 0.00 0.00 0.00 93.49

Malignant ovarian tumour 0.74 52.78 38.78 44.71 72.19

micro-average 0.85 68.64 68.64 68.64 68.64

macro-average 0.71 41.90 42.59 41.63 79.09

weighted-average 62.341 68.64 64.67 73.20

DTL_Sig Benign ovarian tumour 0.87 83.93 86.24 85.07 62.72

BOT 0.82 36.36 36.36 36.36 91.72

Malignant ovarian tumour 0.84 63.04 59.18 61.05 78.11

micro-average 0.89 75.15 75.14 75.14 75.14

macro-average 0.85 61.11 60.59 60.83 77.52

weighted-average 74.78 75.15 74.94 69.07

DLR_Sig Benign ovarian tumour 0.84 84.91 82.57 83.72 79.29

BOT 0.85 42.86 54.55 57.14 93.31

Malignant ovarian tumour 0.83 63.27 63.27 63.27 78.70

micro-average 0.90 75.14 75.14 75.14 75.14

macro-average 0.84 63.68 66.80 68.04 83.77

weighted-average 75.90 75.15 76.06 80.03
Clinic_Sig: clinical signature; Rad_Sig: radiomics signature; DTL_Sig: deep transfer learning signature; DLR_Sig: deep learning radiomic signature; Acc: Accuracy; 
BOT: Borderline ovarian tumour
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Conclusion
We developed a combined multiclass classification 
model that integrated clinical and traditional radiomics 
with DTL decision-level information to discriminate the 
nature of ovarian tumours. The performance and gener-
alisation of this model have intensified its feasibility for 
distinguishing between benign, borderline, and malig-
nant ovarian tumours.
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