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Abstract 

Background  Traditional process for clinically significant prostate cancer (csPCA) diagnosis relies on invasive biopsy 
and may bring pain and complications. Radiomic features of magnetic resonance imaging MRI and methylation 
of the PRKY promoter were found to be associated with prostate cancer.

Methods  Fifty-four Patients who underwent prostate biopsy or photoselective vaporization of the prostate (PVP) 
from 2022 to 2023 were selected for this study, and their clinical data, blood samples and MRI images were obtained 
before the operation. Methylation level of two PRKY promoter sites, cg05618150 and cg05163709, were tested 
through bisulfite sequencing PCR (BSP). The PI-RADS score of each patient was estimated and the region of interest 
(ROI) was delineated by 2 experienced radiologists. After being extracted by a plug-in of 3D-slicer, radiomic features 
were selected through LASSCO regression and t-test. Selected radiomic features, methylation levels and clinical data 
were used for model construction through the random forest (RF) algorithm, and the predictive efficiency was ana-
lyzed by the area under the receiver operation characteristic (ROC) curve (AUC).

Results  Methylation level of the site, cg05618150, was observed to be associated with prostate cancer, for which 
the AUC was 0.74. The AUC of T2WI in csPCA prediction was 0.84, which was higher than that of the apparent dif-
fusion coefficient ADC (AUC = 0.81). The model combined with T2WI and clinical data reached an AUC of 0.94. The 
AUC of the T2WI-clinic-methylation-combined model was 0.97, which was greater than that of the model combined 
with the PI-RADS score, clinical data and PRKY promoter methylation levels (AUC = 0.86).

Conclusions  The model combining with radiomic features, clinical data and PRKY promoter methylation levels based 
on machine learning had high predictive efficiency in csPCA diagnosis.
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Background
Prostate cancer (PCa) is the second most common can-
cer among male cancers worldwide and the leading 
cause of death owing to cancer of men in 46 countries 
[1]. The International Society of Urological Pathology 
(ISUP) Grading Group system is significant for decid-
ing on the treatment for PCa. Recently, some studies 
have supported reconsidering the classification of ISUP 
Grade 1 PCa (so called non-clinically significant PCa, 
ncsPCA) because its risk is closer to that of benign pros-
tatic hyperplasia (BPH) to avoid overtreatment [2, 3]. For 
ISUP Grade ≥ 2 PCa (so called clinically significant PCa, 
csPCA) patients, a timely treatment is necessary, while 
current guidelines mainly recommend active surveillance 
rather than radical prostatectomy for ncsPCA patients 
[4]. To separate csPCA patients from ncsPCA and BPH 
patients for prompt intervention, prostate biopsy is nec-
essary, which brings pain, complications and more medi-
cal costs to patients [5–7]. Some early studies showed 
that about 30% of patients reported significant pain, and 
16% patients reached a score over or equal to five on the 
pain visual analog scale of one to ten [8, 9]. As common 
complications after biopsy, bleeding and infection may 
also be fetal to patients especially when massive rectal 
bleeding or septicemia happens [10]. A simplified proce-
dure for csPCA diagnosis is needed to address the issue.

PRKY is a pseudogene as the homolog gene of PRKX 
on human Y chromosome, which is related to the Xp;Yp 
translocation and is reportedly associated with testicular 
disorder of sex development and infertility [11–14]. Pre-
vious studies have proposed a correlation between the 
methylation of a site, cg05618150, on the PRKY promoter 
and PCa, suggesting the potential of PRKY promoter 
methylation as a new biomarker participating in the pre-
diction of csPCA [15]. Our previous research has found 
another methylation site, cg05618150, is also associated 
with PCa.

Magnetic resonance imaging (MRI) has been recom-
mended in recent guideline for its high value for PCa 
diagnosis [4]. Traditional imaging interpretation based 
on the prostate imaging reporting and data system (PI-
RADS) score system highly relies on the experience and 
capacity of radiologists [16, 17]. The Radiomics refers to 
a subject that use image features to predict the diagnosis 
or even the prognosis of diseases [18]. Radiomic models 
have been proved to be effective in diagnosing urinary 
tumors. Durgesh et al. has made a model combined with 
MRI features with high predictive value for high-grade 
histology in clear cell renal cell carcinoma [19]. Another 

study also extracted MRI features to predict the diagno-
sis of muscle invasion of bladder cancer [20]. By using 
radiomic methods and machine learning technologies, 
imaging features can be extracted and their associations 
with tumor attributes can be analyzed by computer pro-
grams, hence, the variation between imaging readers can 
be partly controlled, and the ISUP stage of PCa can also 
be predicted precisely [21–23]. Therefore, it is possible to 
use MRI features to predict the diagnosis of csPCA.

To find a more efficient way to diagnose csPCA and 
avoid unnecessary biopsy, in our study, we collected the 
methylation data for two sites on the PRKY promoter 
(cg05618150 and cg05163709) in blood samples and MRI 
data from csPCA and ncsPCA or benign prostatic hyper-
plasia patients to determine the combined relevance of 
these data with PCa of different ISUP grades. A predic-
tion model was constructed based on machine learning 
to optimize the procedure for diagnosing csPCA.

Methods
Patient population
This study was approved by the institutional review 
board of our hospital. All the patients were informed 
the research and signed informed consents. Eighty-nine 
Patients who underwent prostate biopsy or photoselec-
tive vaporization of the prostate (PVP) from 2022 to 2023 
were included, and their blood samples were obtained for 
testing PRKY methylation levels. The detailed inclusion 
and exclusion criteria are exhibited in Fig. 1. According 
to the criteria, 54 patients were eligible for this study; 2 
were excluded and 54 patients were ultimately included.

Sample collection and DNA methylation detection
Blood samples were obtained from patients before pros-
tate biopsy or PVP and centrifuged within 4 h after col-
lection (centrifugal radius, 9  cm; centrifugal speed, 63.5 
r/minutes; centrifugal force, 4000  g; centrifugal time, 
10  min; the centrifuge was from Eppendor, Germany). 
Bisulfite sequencing polymerase chain reaction (BSP) 
was used for methylation sequencing. Two sites of PRKY 
promoter, cg05618150 and cg05163709, were detected 
by designed DNA probes (Zhengze, China) after bisulfite 
conversion. The β-actin sequence was selected as the 
control. The premixed solution was made according to 
Table  1. Briefly, 15  µl of solution and 10  µl of template 
were mixed in each well of 96-well plates and prepared 
for quantitative real-time polymerase chain reaction 
(qPCR). The qPCR instrument (Thermo Fisher, America) 
was set as follows: 95  °C for 5 s for initial denaturation; 
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95  °C for 15 s for denaturation; and 56  °C for 1 min for 
annealing, extension and fluorescent detection. The cycle 
threshold (Ct) was recorded for analysis.

MR imaging
A 3.0-T MR scanner (Ingenia; Philips Healthcare) 
was used for image acquisition. The parameters of 
T2-weighted imaging (T2WI) sequences were as follows: 
flip angle (FA): 90°; repetition time (TR): 3000 ms; echo 
time (TE): 100 ms; number of excitations (NEX): 2; slice 
thickness: 3 mm; field of view (FOV): 260 mm; and acqui-
sition matrix: 560 × 560. Diffusion-weighted imaging 
(DWI) images were obtained by using echoplanar imag-
ing sequences, the parameters were shown as follows: FA: 
90°; TR: 6500 ms; TE: 65 ms; NEX: 2; FOV: 260 mm; and 

acquisition matrix: 224 × 224. Apparent diffusion coef-
ficient (ADC) maps were got from a designed worksta-
tion in our hospital. All the images were obtained in the 
DICOM format.

Pathology status
For all patients, transrectal ultrasonography guided pros-
tate biopsy or greenlight PVP were performed within 
1  month after MRI examination. After that, all tissue 
specimens were labeled according to patient ID and ana-
lyzed by an experienced pathologist. (The Gleason score 
of each specimen was checked by another experienced 
pathologist. For patients with various Gleason scores, the 
highest score was recorded for grouping).

ROI segmentation
MRI images were reviewed by two radiologists spe-
cializing in abdominal MRI for more than 10  years. An 
open-source software (3D-Slicer, version 5.2.2) was used 
for region of interest (ROI) segmentation. The regions 
with low signal intensity on T2WI and ADC as well 
as high signal intensity on DWI were regarded as the 
tumor areas, and the PI-RADS score of each tumor area 
was estimated. For tumors with various foci, the regions 
with the highest PI-RADS score were selected for analy-
sis. After one radiologist had completed the evaluation 
and 3D segmentation, the other radiologist checked the 
results. All the differences were resolved through discus-
sion and reexamination.

Feature extraction and selection
The intensity features were extracted through a plug-
in for 3D-Slicer (PyRadiomics, version 3.0.1). A total of 

Fig. 1  The inclusion and exclusion flow. Legend: This picture showed the inclusion and exclusion criteria of our study

Table 1  Elements of the premixed solution in qPCR

Name Volume (uL) Name Volume (Ul)

qPCR mix 12.5 qPCR mix 12.5

Ppmix 2.5 F-cg05163709 0.3

R-cg05163709 0.3

P-cg05163709 0.2

F-cg05618150 0.3

R-cg05618150 0.3

P-cg05618150 0.2

F-ACTB 0.25

R-ACTB 0.25

P-ACTB 0.15

ddH2O 0.25

total 15 total 15
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122 features were extracted from each patient in a sin-
gle sequence, of which 18 were first-order statistics, 14 
were shape features, 15 belonged to original features 
and 75 belonged to texture features. The texture features 
included 24  Gy-level cooccurrence matrix (GLCM) fea-
tures, 14  Gy-level dependence matrix features, 16  Gy-
level run length matrix (GLRLM) features, 16  Gy-level 
size zone matrix (GLSZM) features and 5 neighboring 
gray tone difference matrix (NGTDM) features. Thus, a 
total of 366 features were extracted from T2WI sequence, 
ADC (b = 100–1000) and ADC (b = 100–2000) of each 
patient. Feature selection and dimensionality reduction 
were completed by t test and LASSCO regression on the 
Python platform.

Statistical analysis
R-4.2.3 (https://​www.r-​proje​ct.​org/) was used for sta-
tistical analysis of clinical and methylation data, and 
p-value < 0.05 was regarded as statistically significant. The 
normality test was performed through the Shapiro–Wilk 
test. The t-test was used for homogeneity comparisons 
of normally distributed variables, and the Mann–Whit-
ney test was used for non-normally distributed variables. 
We used the random forest (RF) algorithm to construct 
predictive models on the Python platform. All the mod-
els went through cross-validation. The receiver opera-
tion characteristics (ROC) curve and the area under the 
ROC curves (AUC) were used for predictive efficiency 

assessment. The entire workflow of this study is shown in 
Fig. 2.

Results
Patient characteristics
Thirty-nine patients (median age, 74; range, 58–86) 
with csPCA and 15 patients (median age, 69; range, 
58–87) with BPH or ncsPCA were included. A sum-
mary of the prostate specific antigen (PSA) levels, pros-
trate volumes and PI-RADS scores of the csPCA group 
as well as the BPH and ncsPCA group were exhibited 
in Table  1. No significant differences were observed in 
age (p = 0.13), PSA level (p = 0.15), or prostrate volume 
(p = 0.09) between these two groups. The PI-RADS score 
(p < 0.0001) differed between the two groups (Table 2).

PRKY promoter methylation
After PCR, the difference in Ct between the sample 
and control (ΔCt) was calculated. There was no differ-
ence in the methylation level of cg05163709 between 
the csPCA and ncsPCa groups (p = 0.46). With regard to 
cg05618150, a lower ΔCt could be observed in the csPCa 
group than in the ncsPCa group (Fig.  3), which sug-
gested a higher methylation level. The difference between 
the two groups was statistically significant (p = 0.0052). 
The ROC curve in Fig.  3 shows the predictive value of 
PRKY promoter methylation for csPCa (AUC = 0.74, 
p = 0.0059).

Fig. 2  The workflow of our study. Legend: This picture exhibited the work flow of our study, including sample collection, DNA methylation 
detection, imaging obtainment, feature extraction and statistical analysis

https://www.r-project.org/
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MR feature selection
Features were extracted from T2WI and ADC images 
through the method described above. In total, 7 features 
from T2WI sequences and 9 from ADC sequences were 
finally selected, including T2-glcm-lmc2, T2-glszm-Zone-
Percentage, T2-glcm-correlation, dADC100_1000-Image-
original-Mean, dADC100_2000-Image-original-Mean, dAD 
C100_1000-firstorder-Median, dADC100_1000-firstorder-
10Percentile, dADC100_2000-firstorder-10Percentile, T2- 
glrlm-GrayLevelNonUniformity, T2-glrlm-ShortRunLow-
GrayLevelEmphasis, T2-firstorder-10Percentile, dADC100_ 
2000-ngtdm-Busyness, dADC100_2000-glcm-ClusterShade, 
dADC100_2000-firstorder-Skewness, T2-firstorder-Skew-
ness and dADC100_1000-firstorder-Skewness, 7 of which 
are first-order statistics and 9 are texture features (3 GLCM, 
2GLRLM, 1 GLSZM, 1 NGTDM and 2 image-original fea-
tures). Figure 4 exhibits the matrix for all the selected features.

Machine learning
The prediction efficiencies of T2WI, ADC, and com-
bined models based on the RF algorithm are shown in 
Fig.  5. The sensitivity, specificity and accuracy of T2WI 
were 1.0, 0.71 and 0.88; those of ADC were 1.0, 0.26 and 
0.71; those of the T2WI-clinic-combined model were 
1.0, 0.71 and 0.88; those of the T2WI-methylation-clinic-
combined model were 1.0, 0.71 and 0.88; and those of the 
model based on the PI-RADS score, the PRKY promoter 
methylation level (cg05618150) and clinical data were 
1.0, 0.43 and 0.76. The T2WI sequence reached an AUC 
of 0.84, which was higher than that of ADC sequence 
(AUC = 0.81). The AUC of T2WI-clinic-combined model 
was 0.94, whereas that of the T2WI-clinc-methylation-
combined model was 0.97. With respect to the model 
based on the PI-RADS score, the PRKY methylation 
level and clinical data had reached an AUC of 0.86. The 

Table 2  Clinical data and PI-RADS score of csPCA and nsPCA or BPH patients

nsPCA&BPH (n = 15) csPCA (n = 39) P value

Age(mean/range) 70.20(58/87) 73.51(58/86) 0.1252

PSA(ng/mL)(median/range) 9.35(3.75/90.5) 14.3(0.014/2505) 0.1489

Prostate volume(mL)(median/range) 64.4(33.4/135.9) 52.2(23/124.7) 0.0924

PI-RADS socre (num/percentage)  < 0.0001

 < 3 8(53.33) 0(0.00)

3 3(20.00) 7(17.95)

 ≥ 4 4(26.67) 32(82.05)

Fig. 3  The data distribution and ROC curve of the cg05618150 methylation level. Legend: A Data distribution of the cg05618150 methylation level 
in the csPCA and ncsPCA groups. B ROC curve of cg05618150 methylation level to predict csPCA
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decision tree of the T2WI-clinc-methylation-combined 
model was shown in Fig. 6.

Discussion
Our study tested the predictive value of PRKY promoter 
methylation as well as T2WI and ADC sequences, and 
constructed combined prediction models for csPCA. The 
T2WI-clinic-combined model exhibited an AUC of 0.94, 
and the T2-methylation-clinic-combined model reached 
a higher AUC of 0.97. Previous studies have shown the 
high predictive value of MRI features for prostate cancer, 
Liu et al. used multiphase MRI features to predict P504s/
P63 Immunohistochemical Expression and reached an 
AUC of 0.93, Qiao et  al. also constructed a prediction 
model for Gleason grade group with T2 and DWI fea-
tures, and the AUC of which was 0.92 [24, 25]. The same 
results were observed in our research, which demon-
strated greater efficacy in csPCA diagnosis.

To obtain radiomic images with high quality, a 3.0-T 
MR was chosen for its increased signal-to-noise ratio 
which may bring increased spatial resolution compared 
with a 1.5-T MR [26]. T2WI and ADC sequences were 
previously reported to be effective in predicting prostate 
cancer [27]. According to previous studies, T2WI and 
ADC were negatively correlated with the percentage area 
of nucleus and cytoplasm, and positively related to the 
percentage area of lumen space [28]. Lumen space was 
observed negatively associated with Gleason score, and 
a more chaotic gland structure was related to a higher 
Gleason score [29, 30]. Therefore, T2WI and ADC might 
be considered as relative factors to the Gleason Score. In 
our study, the results also revealed a strong correlation 
between the two sequences and a high Gleason grade. 
The T2WI model has reached an AUC of 0.84 and the 
ADC model has reached 0.81.

Additionally, the AUC of T2WI was higher than that 
of ADC in our study, which is different from the find-
ings of several previous studies [25, 31]. However, 
Liu et  al. observed the same phenomenon as in our 
research [24]. The reason might be related to the fol-
lowing points. First, with a higher resolution ratio, 
T2WI sequence might provide more details than ADC 
sequence. Second, T2WI is more efficient in delineating 
zonal anatomy which is associated with the degree of 
disorder in the glands [32]. Since the Gleason score sys-
tem is highly based on the morphological features and 
arrangement of glands, T2WI might be more relevant 
to csPCA. Considering that MRI examination at some 
medical institutions may not include DWI sequences, 
T2WI was selected for the construction of the predic-
tion model with clinical data and PRKY promoter meth-
ylation level. As a result, a high predictive value was 
observed.

The methylation level of the site cg05163709 on PRKY 
promoter in urine specimens has already been proven 
to be associated with Prostate Cancer [15]. However, 
in our study, the methylation level of cg05163709 was 
found irrelevant to csPCA in blood samples, but which 
of cg05618150 was found to be associated with csPCA 
and have predictive value (AUC = 0.74). Compared 
with obtaining urine sample, acquisition of blood sam-
ple was more comfortable and convenient for patients 
because of freeing from digital rectal examination. BSP, 
an efficient method for methylation detection in previous 
research, was also used in our study to ensure the accu-
racy [15]. Although the incomplete conversion might 
affect the accuracy of BSP, compared with other methods 
for detecting DNA methylation in a single gene, BSP is 
more convenient and reaches a great sensitivity [33, 34]. 

Fig. 4  Radiomic features selected by LASSCO regression and t-test. Legend: The red dots refer to positive correlation and the blue dots refers 
to negative correlation
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After the cg05618150 methylation level was included 
in the T2WI-clinic-combined model, the AUC of the 
model has raised to 0.97, which suggested the potential 
for cg05618150 methylation level to promote predictive 
value of the radiomic model.

In our study, RF algorithm, the efficiency of which 
has been tested in previous research, was used for the 

construction of prediction models with high quality 
[23]. Although other algorithms including the k-nearest 
neighbors and the naive Bayes are also effective in pro-
cessing multiple variables, the RF algorithm based on the 
decision tress is more convenient to be interpreted by 
humans [35]. The RF algorithm can process predictors of 
different scales and distributions and show the relevance 

Fig. 5  ROC curve of the prediction models. Legend: A ROC curve of T2WI; B ROC curve of ADC; C ROC curve of T2WI combined with clinical data; 
D ROC curve of T2WI combined with clinical data and cg05618150 methylation level; E ROC curve of PI-RADS score combined with clinical data 
and cg05618150 methylation level
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of each predictor [36]. Thus, we inputted clinical data 
include age, PSA level and prostrate volume into the 
model in expectation of improving the predictive value. 
To demonstrate the judgement logic of RF algorithm, a 
specific decision tree was exhibited, which might provide 
intuitional advice for clinical decision. Interestingly, in 
the T2WI model, the T2WI-clinic-combined model and 
the T2WI-clinic-methylation-combined model, the same 
sensitivity, specificity and accuracy could be observed. 
This perhaps owes to the high weight of T2WI features 
in the combined model. Nevertheless, the AUC of the 
T2WI-methylation-clinic-combined model was still 
greater than that of any other model in our study, indicat-
ing the value of PRKY promoter methylation in the pre-
diction of prostate cancer.

As an important imaging assessment criterion for 
prostate cancer, the PI-RADS score was excluded when 
building the predictive model. Our study aimed to con-
struct an objective model to evaluate the predictive 
value of MRI features. Considering the influence of the 

subjectivity of radiologists in the process of evaluating 
the PI-RADS score, only objective imaging features were 
ultimately included. A model based on the PI-RADS 
score, clinical data and PRKY promoter methylation was 
also constructed, but the results showed that the T2WI-
clinic-methylation-combined model was more effective 
than the one with the PI-RADS score. However, consid-
ering the difference among radiologists from different 
hospitals, a multicenter study is still necessary to prove 
the finding in further research.

The main limitation of our study is that only 54 patients 
from a single center were included. Thus, selection 
bias could not be ignored. Second, some clinical fea-
tures, including body mass index and other biochemi-
cal characteristics such as free PSA were not included. 
Additionally, only BSP was used for PRKY promoter 
methylation detection. Other methods for sequencing, 
such as methyl-CpG binding domain-based capture and 
sequencing or methylation sensitive restriction endonu-
clease sequencing, might bring different results. Finally, 

Fig. 6  Decision tree of the RF algorithm in the T2WI-clinc-methylation-combined model. Legend: Elements in higher positions had higher priority
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we only constructed the prediction models by means of 
the RF algorithm. A study comparing various algorithms 
may help to select a model with the highest predictive 
value.

Our study constructed a prediction model for csPCa 
with high predictive value combined with radiomic fea-
tures, PRKY methylation level and clinical data. Thanks 
to the convenience in model interpretation of RF algo-
rithm, after further improvement, the model can be 
exported and processed into clinician-friendly applica-
tions that output the possible clinical diagnosis simply 
after the radiomic features, PRKY methylation levels and 
clinical data were inputted. This may optimize the diag-
nostic process of prostate cancer and benefit both doc-
tors and patients.

Conclusion
In conclusion, our study revealed the association between 
the methylation level of a site, cg05618150, on PRKY pro-
moter in blood samples and csPCA, tested the predictive 
value of T2WI and ADC sequences for csPCA diagnosis, 
and constructed a T2WI-methylation-clinic-combined 
model with high prediction efficiency via machine learn-
ing methods.
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