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Abstract
Background The value of radiomics features from the adrenal gland and periadrenal fat CT images for predicting 
disease progression in patients with COVID-19 has not been studied extensively. We assess the value of radiomics 
features from the adrenal gland and periadrenal fat CT images in predicting COVID-19 disease exacerbation.

Methods A total of 1,245 patients (685 moderate and 560 severe patients) were enrolled in a retrospective study. We 
proposed a 3D V-net to segment adrenal glands in onset CT images automatically, and periadrenal fat was obtained 
using inflation operation around the adrenal gland. Next, we built a clinical model (CM), three radiomics models 
(adrenal gland model [AM], periadrenal fat model [PM], and fusion of adrenal gland and periadrenal fat model [FM]), 
and radiomics nomogram (RN) after radiomics features extracted.

Results The auto-segmentation framework yielded a dice value 0.79 in the training set. CM, AM, PM, FM, and RN 
obtained AUCs of 0.717, 0.716, 0.736, 0.760, and 0.833 in the validation set. FM and RN had better predictive efficacy 
than CM (P < 0.0001) in the training set. RN showed that there was no significant difference in the validation set (mean 
absolute error [MAE] = 0.04) and test set (MAE = 0.075) between predictive and actual results. Decision curve analysis 
showed that if the threshold probability was between 0.4 and 0.8 in the validation set or between 0.3 and 0.7 in the 
test set, it could gain more net benefits using RN than FM and CM.

Conclusions Radiomics features extracted from the adrenal gland and periadrenal fat CT images are related to 
disease exacerbation in patients with COVID-19.
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Background
The coronavirus disease 2019 (COVID-19) has caused 
serious public health problems. Although a diagnosis and 
treatment protocol suitable for the national situation has 
been enacted in each country, the consensus is to sepa-
rate moderate and severe patients who need special care. 
Predicting early disease progression and accurately iden-
tifying which patients are at risk of developing severe or 
critical disease is not only conducive to early disease con-
trol. However, it will also effectively allocate healthcare 
resources globally.

Because it was unclear that the polymerase chain reac-
tion (PCR) technique [1], clinical symptoms, and labora-
tory tests were correlated with progression in patients 
with COVID-19 [2], researchers started exploring pre-
dicting the disease prognosis of COVID-19 combining 
artificial intelligence (AI) technology and CT images. 
Zhang et al. [3] constructed a comprehensive system and 
proved that the combination of chest CT and AI technol-
ogy is a potential tool to predict disease progression in 
patients with COVID-19. Most studies have focused on 
the relationship between features from chest CT images 
and disease progression and ignored the endocrine sys-
tem, which plays an essential role in disease progression 
[4–6]. However, studies showing whether the progno-
sis of patients with COVID-19 can be affected by direct 
damage or indirect change of adrenal glands or periadre-
nal fat are lacking.

The entire system and the organs are closely related 
to the immune-inflammatory state (7–8). Moreover, 
the adrenal gland can be changed not only by receiving 
a direct attack from SARS-CoV-2 through angiotensin-
converting enzyme-2 (ACE2) [9] but also by adapting to 
physiological needs and pathological conditions because 
it has an astonishing regenerative capacity to adjust to 
unique micro-environments [10]. Therefore, we hypoth-
esized that adrenal gland changes could occur due to 
its adaptive mechanism and SARS-CoV-2 invasion. The 
periadrenal fat was bound to be affected as the closest 
tissue around the adrenal gland. Fundamental changes 
can be detected by extracting radiomics features from 
chest CT images using AI technology [11]. Manual seg-
mentation is the first and critical step in successfully con-
structing a radiomics model, but it is time-consuming 
and error-prone because of repeated labor. Combining 
the auto-segmentation framework based on AI technol-
ogy with manual revision improvesefficiency and quality 
(12–13).

We, therefore, constructed an auto-segmentation 
framework and developed a radiomics nomogram (RN) 
to predict progression in patients with COVID-19 by 
integrating radiomics features from adrenal glands and 
periadrenal fat CT images with clinical indicators and 
to determine that radiomics features extracted from the 

adrenal gland and periadrenal fat CT images were related 
to possibility of deterioration in patients with COVID-19.

Methods
Data resources and image grouping
CT images and clinical data were retrospectively and 
consecutively collected between January 1 and April 30, 
2020, from two hospitals: Huoshenshan Hospital (HSH) 
(n = 1,209) and Maternal and Child Health Hospital Opti-
cal Valley Branch Hospital of Hubei Province (MCH) 
(n = 36), China. Diagnosis and clinical classification of 
patients with COVID-19 were confirmed according to 
Diagnosis and Treatment Protocol for Novel Coronavi-
rus Pneumonia (Trial Version 8). 30 clinical indicators 
were collected including age, sex, lnterleukin 6 (IL-6) 
levels, white blood cell count (WBC), lymphocyte count 
(L), neutrophil count (N), hemoglobin (HB ), red blood 
cell (RBC), blood platelet count (PLT), C-reactive pro-
tein (CRP), procalcitonin (PCT), prothrombin time (PT), 
thrombin time (TT), fibrinogen (FIB), D dimer (DD), 
blood sugar (BS), alanine transaminase (ALT), glutamic 
oxaloacetic transaminase (AST), total protein (TP), albu-
min (ALB), total bilirubin (TBil), direct bilirubin (D-Bil), 
blood urea nitrogen (BUN), creatinine (Cre), B-type 
natriuretic peptide (BNP), myoglobin (Mb), troponin 
(Tn), lactate dehydrogenase (LDH), creatine kinase (CK) 
and creatine kinase-MB (CK-MB). Moreover, the miss-
ing value, more than 20% of the total data, were excluded. 
If there were incomplete clinical or blood examination 
data, we used the median of the variable distribution 
to fix it. Patients of age ≤ 14 years (n = 2), low quality or 
unreadable chest CT images, and lesion or changes in 
adrenal glands CT images ( verified by two experienced 
radiologists) (n = 209) were excluded. All images were 
non-enhanced chest CT images and reconstructed at a 
slice thickness of 1.00 mm. Details of CT characteristics 
are listed in Supplementary Table 1. Patients with adre-
nal lesions were excluded after being evaluated by two 
radiologists with more than ten years of experience. We 
chose chest CT images scanned within four days of the 
first diagnosis as the onset image. If the CT scan was 
done more than once, we chose the one closer to the 
admission date. Supplementary Fig.  1 demonstrates the 
inclusion and exclusion criteria. Figure 1 shows the work-
flow of our study.

CT images of 1,209 patients from Huoshenshan Hospi-
tal were used to construct the prediction models divided 
into the training set (967/1209, 80%) and the valida-
tion set (242/1209, 20%) randomly. We constructed five 
models: the adrenal gland radiomics model (AM), peri-
adrenal fat radiomics model (PM), a fusion of the adre-
nal gland and periadrenal fat radiomics model (FM), 
clinical model (CM) and radiomics nomogram (RN). A 
total of 36 Patients (13 moderate and 23 severe patients 
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from Maternal and Child Health Hospital Optical Valley 
Branch Hospital) were included as an independent test 
set.

Auto-segmentation framework and ROIs delineation
We proposed a cascaded V-net network framework to 
automatically segment the bilateral adrenal glands. The 
cascaded V-net network framework was constructed 
using two V-nets based on the coarse-to-fine principle, 
including a coarse segmentation network for rapidly 
locating the target area, namely the adrenal glands, and 
an exemplary segmentation network for optimization 
and precisely delineating the adrenal glands. Coarse seg-
mentation adopts 3 × 3 × 3 resolution to quickly find the 
target region (global sampling) from the global, and fine 
segmentation adopts 1 × 1 × 1 to carry out more detailed 
segmentation (mask sampling) in the target region. Dice 
loss is used as a loss function. ROI of periadrenal fat 
was obtained using the inflation algorithm based on the 

adrenal gland. An experienced radiologist (Y.F.) manu-
ally delineated the ROIs of bilateral adrenal glands, 
which werethe ground truth labels of adrenal, and he was 
asked to delineate the adrenals according to the image 
delineating principles of BraTS 2018. They compared 
the automated segmentation with the ground truth; any 
discrepancies or errors identified during the review are 
manually corrected or adjusted (14–15). We trained a 
coarse localization model as Model 1 for the auto-seg-
mentation framework, which can perform coarse seg-
mentation to locate the adrenal gland area. The second 
V-net model was used to define segmentation as Model 2 
and further divided into the left and right adrenal glands. 
The segmentation frame is shown in Fig. 2. ROIs, includ-
ing bilateral adrenal glands and periadrenal fat from all 
CT images without annotation, were segmented using 
the auto-segmentation framework. Dice value was used 
to evaluate the cascaded V-net network framework.

Fig. 1 The workflow of the study
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Radiomics feature selection and models building
Radiomic features were extracted from ROIs on the CT 
images using a Python package (PyRadiomics V3.0). 
B-spline interpolation resampling was used to normalize 
the voxel size, and the anisotropic voxels were resampled 
to form isotropic voxels of 1.0 mm × 1.0 mm × 1.0 mm in 
the feature extraction. A total of 2,264 radiomics features 
of each ROI were extracted. Next, the feature in the train-
ing set was preprocessed by standardization. The mean 
and variance in the training set were applied to the vali-
dation and test sets.

First, a univariate analysis named K-best was employed 
to reduce dimensionality and select significant features. 
It selected features according to K’s highest scores com-
puted through ANOVA F-value and P-value between 
label and features. Features with a significant difference 
(P < 0.05) were selected. Next, the LASSO feature-selec-
tion algorithm extracted the most informative radiomics 
features to prevent the “curse of dimensionality.“ The 
LASSO algorithm assigns a penalty (lambda) to each 
feature based on its contribution to the model’s perfor-
mance. The optimal regularization parameter (lambda) 
for the LASSO algorithm is typically determined using 
10-fold cross-validation. By varying the value of lambda, 
only the most essential features that contribute signifi-
cantly to predicting the outcome are included in the final 
radiomics model. After feature extraction and selec-
tion, logistic regression (LR) algorithms were trained to 
construct three radiomics models (AM, PM, and FM) 
for predicting the disease progression of COVID-19. 
We used five-fold cross-validation to find the optimal 
hyperparameters of the logistic regression model, then 
used the optimal hyperparameters to construct models. 
Lbfgs solver was used in the optimization problem. In the 

FM model, the RadScore of the patient was calculated 
according to the LASSO algorithm.

RN construction and evaluation
We used univariate analysis to assess the relationship 
between clinical factors plus serum biomarkers and dis-
ease outcome. Features with P < 0.05 were introduced 
into multivariate LR analysis, and the optimal radiomics 
feature subset was selected by LASSO five-fold cross-
validation. The two make the best combination. The 
best training and validation sets assignment was chosen 
for the subsequent analysis. Next, we applied the mul-
tivariate LR model to build CM using valuable clinical 
indicators and RN using the RadScore from FM with 
clinical indicators to predict the disease progression of 
COVID-19.

We diagnosed collinearity by calculating the VIF for 
variables in RN to detect multicollinearity among the 
radiomics nomogram variables. In the end, RN was veri-
fied in the validation and test sets. Calibration curves 
and the Hosmer–Lemeshow test assessed the relation 
between the predicted risks and actual results. DCA was 
used to evaluate the performance of the RN.

Statistics
Before model building, differences in clinical factors and 
serum biomarkers between moderate and severe patient 
sets were assessed using the Mann-Whitney U test or 
Student’s t-test for continuous variables and the χ2 test or 
Fisher’s exact test for categorical variables. We analyzed 
all data using SPSS for Windows version 26.0 (IBM Corp., 
Armonk, New York, USA). P < 0.05 was considered a sta-
tistically significant difference.

Fig. 2 The framework of the used V-net
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Dice value was used to assess the effectiveness of the 
auto-segmentation framework. The AUC of receiver-
operating characteristics (ROC) with 95% confidence 
interval (95% CI), sensitivity, and specificity were used to 
evaluate the performance of AM, PM, FM, CM, and RN. 
Accuracy was calculated to assess the prediction perfor-
mance. Differences in AUC values among different mod-
els were estimated using the DeLong test. Calculate three 
statistics for each pair of models being compared: AUC 
- ROC, variance of AUC - ROC, and covariance of AUC 
- ROC. The DeLong test whether there is a significant 

difference between the AUC - ROC values of the two 
models based on their variances and covariance.

Results
Patient characteristics
The data of 1,209 patients were formed as our training 
and validation sets, including 672 patients from mod-
erate COVID-19 and 537 from severe COVID-19. The 
patient characteristics in training and validation sets 
are listed in Table  1. No significant differences were 
observed between the training and validation set in sex 

Table 1 Clinical characteristics of patients in training and validation set (n = 1209)
Variable Training set Validation set

Moderate 
pneumonia

Severe 
pneumonia

P Moderate 
pneumonia

Severe pneumonia P P

Age (yr,mean ± SD ) 57.251 ± 13.660 63.121 ± 12.390 0.000 58.396 ± 12.299 65.667 ± 12.195 0.000 0.011

Sex n(%) 0.476 0.069 0.238

^

Men 270(50.2%) 226(52.7%) 64(47.8%) 65(60.2%)

women 268(49.8%) 203(47.3%) 70(52.2%) 43(39.8%)

IL-6 3.164 ± 4.940 16.792 ± 100.663 0.000 2.613 ± 2.513 7.180 ± 16.006 0.000 0.003

WBC(109/L) 5.966 ± 1.886 6.384 ± 2.476 0.000 5.647 ± 1.941 6.572 ± 2.609 0.003 0.243

 L(109/L) 1.646 ± 0.601 1.423 ± 0.680 0.000 1.434 ± 0.520 1.150 ± 0.568 0.000 0.000

 N(109/L) 3.703 ± 1.638 4.320 ± 2.388 0.000 3.617 ± 1.781 4.852 ± 2.564 0.000 0.323

HB(g/L) 125.507 ± 17.062 117.773 ± 23.603 0.000 122.284 ± 14.681 117.082 ± 23.804 0.096 0.021

RBC(1012/L) 4.066 ± 0.547 3.869 ± 0.605 0.000 3.948 ± 0.497 3.876 ± 0.559 0.208 0.043

PLT(109/L) 231.213 ± 72.781 231.301 ± 85.677 0.727 265.530 ± 88.988 232.269 ± 78.348 0.012 0.001

CRP(µg/L) 3.211 ± 3.393 5.002 ± 4.483 0.000 5.008 ± 3.962 7.478 ± 3.727 0.000 0.000

PCT(µg/L) 1.877 ± 2.647 1.498 ± 2.434 0.003 1.396 ± 2.420 1.242 ± 2.247 0.020 0.051

PT(s) 11.778 ± 2.825 12.596 ± 4.826 0.000 12.236 ± 2.154 12.547 ± 3.287 0.042 0.100

TT(s) 13.549 ± 3.623 14.692 ± 5.088 0.000 14.974 ± 3.236 15.086 ± 3.892 0.071 0.000

FIB (g/L) 3.408 ± 1.095 3.398 ± 0.941 0.097 3.373 ± 0.925 3.768 ± 1.010 0.000 0.002

DD (mg/L) 1.256 ± 1.937 1.720 ± 2.516 0.000 1.479 ± 2.038 3.249 ± 4.969 0.000 0.000

BS (mmol/L) 5.487 ± 2.123 6.031 ± 2.747 0.000 5.295 ± 1.660 6.053 ± 2.656 0.005 0.880

ALT (u/L) 32.599 ± 35.669 33.361 ± 35.745 0.563 30.765 ± 23.527 37.676 ± 30.337 0.087 0.039

AST (u/L) 22.623 ± 13.871 25.920 ± 19.039 0.008 24.469 ± 17.138 33.966 ± 45.357 0.009 0.007

TP (g/L) 65.851 ± 7.689 63.932 ± 8.994 0.000 62.295 ± 8.667 61.614 ± 6.204 0.059 0.000

ALB (g/L) 38.369 ± 4.747 36.289 ± 5.404 0.000 35.805 ± 5.214 33.883 ± 3.949 0.000 0.000

TBil (µmol/L) 10.544 ± 6.458 10.597 ± 5.935 0.881 9.417 ± 4.131 12.193 ± 7.718 0.000 0.718

D-Bil (µmol/L) 3.734 ± 3.974 4.063 ± 3.767 0.028 3.494 ± 1.945 5.095 ± 4.819 0.000 0.083

BUN (mmol/L) 4.672 ± 1.493 5.168 ± 2.408 0.006 4.471 ± 3.139 4.881 ± 2.415 0.143 0.000

Cre (µmol/L) 66.616 ± 17.565 68.839 ± 27.524 0.938 71.733 ± 54.602 70.131 ± 23.705 0.578 0.913

BNP (pg/ml) 14.952 ± 63.098 40.715 ± 116.651 0.000 14.357 ± 38.344 49.172 ± 90.294 0.000 0.174

Mb(µg/L) 6.673 ± 5.176 11.440 ± 35.630 0.104 8.234 ± 19.045 34.481 ± 219.515 0.000 0.956

Tn(µg/L) 3.279 ± 2.815 2.879 ± 2.844 0.278 3.493 ± 2.782 2.696 ± 2.870 0.057 0.413

LDH (u/L) 172.169 ± 58.910 213.429 ± 87.814 0.000 193.202 ± 58.210 269.167 ± 131.487 0.000 0.000

CK (u/L) 57.192 ± 41.249 58.817 ± 75.964 0.003 55.940 ± 68.155 85.376 ± 133.713 0.364 0.423

CK-MB (u/L) 9.233 ± 6.598 10.957 ± 9.737 0.001 8.793 ± 4.359 10.668 ± 8.066 0.030 0.905
Clinical characteristics and serum biomarkers of patients in the training and internal validation set. IL-6 = Interleukin 6; WBC = white blood cell count, L = lymphocyte 
count, N = neutrophil count, HB = hemoglobin; RBC = red blood cell; PLT = blood platelet count; CRP = C reactive protein; PCT = procalcitonin; PT = prothrombin 
Time; TT = thrombin time; FIB = fibrinogen; DD = D dimer; BS = blood sugar; ALT = alanine transaminase; AST = glutamic oxaloacetic transaminase; TP = total 
protein; ALB = albumin; TBil = total bilirubin; D-Bil = direct bilirubin; BUN = blood urea nitrogen; Cre = creatinine; BNP = B-type natriuretic peptide; Mb = myoglobin; 
Tn = troponin; LDH = lactate dehydrogenase; CK = creatine kinase; CK-MB = creatine kinase-MB

Note: P-value < 0.05 was considered as a significant difference. Differences in clinical factors and serum biomarkers between moderate and severe patient sets 
were assessed using the Mann–Whitney U test or Student’s t-test for continuous variables depending on the standard test and the χ2 test or Fisher’s exact test for 
categorical variables
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(P = 0.238). IL-6, WBC, L, N, CRP, PCT, PT, DD, BS, AST, 
ALB, D-Bil, BNP, LDH, and CK-MB differed significantly 
between moderate and severe pneumonia sets both in 
training and validation sets (P < 0.05).

Adrenal gland and periadrenal fat auto-segmentation 
framework
For adrenal gland segmentation, we manually delin-
eated bilateral adrenal glands from the CT images of 315 
patients; 265 were used for training. The remaining data 
from 50 patients were used to evaluate the performance. 
The segmentation model yielded average Dice values of 
79.48% for the left and 78.55% for the right adrenal gland. 
The entire adrenal gland achieved an average Dice value 
of 79.02%. Representative auto-segmentation results are 
shown in Fig.  3. The segmentation algorithm was then 
used to segment all the remaining data automatically.

Radiomics feature and clinical indicator selection
In the training set, the number of radiomics features 
was reduced to 23 for building AM that included 8 
first-order features and 15 texture features (Gray Level 
Co-occurrence Matrix [GLCM] = 3, Gray Level Size 
Zone Matrix [GLSZM] = 8, Gray Level Run Length 
Matrix [GLRLM] = 2 and Gray Level Dependence 
Matrix [GLDM] = 2); 68 for PM that included 11 first-
order features, 2 sharp feature, and 55 texture features 
(GLCM = 13, GLSZM = 25, GLRLM = 7, GLDM = 9 and 
Neighboring Gray Tone Difference Matrix [NGTDM] = 1) 
and 82 for FM that included 12 first-order features and 70 

texture features (GLCM = 17, GLSZM = 38, GLRLM = 3, 
GLDM = 5 and NGTDM = 7). These features were evalu-
ated to construct three radiomics models.

A total of 30 clinical factors and serum biomark-
ers were analyzed in our study. Next, univariate logistic 
regression analysis selected 17 clinical factors and serum 
biomarkers. They are LDH, CRP, age, ALB, L, N, Hb, 
RBC, DD, BS, WBC, CK_MB, TT, BUN, AST, TP, PT. and 
7 indicators, LDH, L, HB, DD, WBC, TT, and TP, were 
selected using multivariate logistic regression analysis. 
The relationship between RadScore from FM used in 
constructing a radiomics nomogram (RN) and 30 clinical 
factors plus serum biomarkers were analyzed using Pear-
son correlation between training, validation, and test sets 
(Fig. 4). The difference in RadScores with clinical factors 
or serum biomarkers was not significant. Then, 17 clini-
cal factors and serum biomarkers were selected using 
univariate logistic regression analysis, and 7 indicators, 
LDH, L, HB, DD, WBC, TT, and TP, were selected using 
multivariate logistic regression analysis.

Three radiomics models and clinical model building
We developed three radiomics models (AM, PM, FM) 
based on radiomics features and a clinical model (CM) 
based on the seven selected independent predictive 
clinical indicators. We used three evaluation indicators 
(area under the curve [AUC], 95% CI, sensitivity [SEN], 
and specificity [SPE]) to assess AM, PM, FM, and CM 
for predicting the progression of patients with COVID-
19 in training, validation, and test sets. In general, AM 

Fig. 3 The comparison of auto-segmentation results and ground truth on representative cases from the training set. The upper line shows the ground 
truth, and the lower line shows the auto-segmentation results. The green color shows the right adrenal glands, whereas red denotes the left. Yellow shows 
right periadrenal fat, and purple shows left
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achieved an AUC of 0.692, 0.714, and 0.659 in the train-
ing set, validation set, and test set, respectively; PM 
achieved an AUC of 0.764, 0.736, and 0.645; FM achieved 
an AUC of 0.791, 0.760 and 0.686; CM obtained an AUC 
of 0.712,0.717 and 0.692 (Fig. 5, supplementary Table 2).

Box plots summarizing the RadScores and coefficients 
of seven clinical indicators in training, validation, and 
test sets directly demonstrate the difference between 
RadScore and coefficients of seven clinical indicators 
between the moderate and severe patient sets (Fig. 6).

RN construction and validation
Multivariate analysis revealed that RadScore and seven 
clinical indicators were significant independent fac-
tors predicting disease progression in patients with 
COVID-19. We conducted collinearity diagnosis by cal-
culating the VIF for variables in RN to detect multicol-
linearity among the radiomics nomogram variables, and 
the threshold was set to 10 [16–18]. Finally, the VIF value 
for the radiomics score and seven clinical indicators in 
RN ranged from 1.007 to 1.191, indicating no severe col-
linearity in these factors. Next, we used the RadScore 
from FM combined with seven clinical indicators to con-
struct the RN to assess disease progression in patients 
with COVID-19 (Fig.  7). The RN showed satisfactory 
performance in predicting and assessing progression in 
patients with COVID-19 with an AUC of 0.806 (95% CI, 
0.780 to 0.831) in the training set, 0.833 (95% CI, 0.780 to 
0.878) in the validation set, and 0.773 (95% CI, 0.603 to 
0.895) in the test set (Fig. 5, supplementary Table 2).

DeLong’s test was used to compare the AUCs of the 
training set’s three radiomics models, CM and RN. The 
result showed that the RN and FM were significantly bet-
ter than CM (P < 0.0001). The difference between FM and 
RN was not statistically significant (P = 0.233) in the vali-
dation and test sets.

The Hosmer–Lemeshow test was not significant in the 
validation set (mean absolute error [MAE] = 0.075) or test 
set (MAE = 0.04), which suggests that there was no sig-
nificant departure from actual values (Fig.  8). Decision 
curve analysis (DCA) (Fig. 9) showed that if the threshold 
probability was between 0.4 and 0.8 in the validation set, 
the RN could get more net benefits than FM and CM. If 
the threshold probability was between 0.3 and 0.7 in the 
test set, RN can still get more net benefits than FM and 
CM. The threshold cannot be set above 0.8; otherwise, 
the net benefit would become negative values.

Discussion
In our study, the auto-segmentation framework could 
robustly localize the adrenal glands and accurately refine 
their boundary. The RN using adrenal glands and peri-
adrenal fat onset CT images performed well, reflect-
ing that the microscopic changes in adrenal glands 

Fig. 4 Correlation heatmap in training, validation, and test set. FM = fusion 
of adrenal gland and periadrenal fat model; CM = clinical model; RN = ra-
diomics nomogram
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and periadrenal fat in patients with COVID-19 can be 
detected using radiomics features. We hope this model 
will assist radiologists and clinicians in early interven-
tion, monitoring, and management, ultimately lead-
ing to improved clinical outcomes. It can be used in the 
COVID-19 epidemic, especially when there is a shortage 
of healthcare workers.

Our results suggested that adrenal gland and peri-
adrenal fat changes on the onset of CT images in severe 
patients differed from those in moderate patients. Results 
from autopsies in 10 patients from COVID-19 performed 
by Zinserling et al. [19] showed that inflammation—
small proliferations of cells with enlarged light nuclei 
and mononuclear infiltration, CD3 + and CD8 + in differ-
ent layers of adrenal glands and their surrounding tissue, 
such as periadrenal fat. These changes may be related 
to direct damage of adrenal glands and indirect changes 
stimulated by systemic inflammation caused by SARS-
CoV-2 or the immune state. In one respect, the changes 
were caused by direct damage done by SARS-CoV-2. 
The SARS virus has been identified in adrenal cells, sug-
gesting a direct local replication-mediated cytopathic 
effect of the virus in adrenal tissue [20]. Moreover, the 
virus may cause hemorrhage, necrosis, or thrombosis at 
the adrenal level [21]. Adrenal lesions due to influenza 
and other viruses have been described previously [22]. 
Recent findings have indicated the possibility of venous 
thromboembolism in patients with COVID-19, which 
may cause an acute adrenal insufficiency that may be an 
indicator of making the disease worse [23]. All of these 
changes caused by the COVID-19 virus can change the 
physical properties of the adrenal tissue and the hetero-
geneity between tissues and cells in patients with differ-
ent conditions. First-order and higher-order radiomics 
features can reflect the changes in physical properties. 
We selected 82 features, concluding with 12 first-order 
features and 70 texture features. In FM, the most relevant 
to the severity of the disease is Robust - Mean - Absolute 
- Deviation and there is a negative correlation. This fea-
ture reflects the amount of variation or dispersion from 
the mean value which means the higher the feature is, the 
less severe the disease is. Moreover, in the AM model, we 
got the same feature with the highest negative correlation 
with disease severity. The most relevant positive corre-
lation feature is Zone Entropy which reflects the uncer-
tainty or randomness in the distribution of zone sizes and 
gray levels. A higher value indicates more heterogenene-
ity in the texture patterns which means more severity of 
disease. In PM, The feature with the largest positive cor-
relation is also Zone Entropy. This feature reflects the 
heterogeneity of adrenal glands, which is the same as 
that extracted feature by tumor radiomics analysis [24]. 
Our predicting results showed that AM’s AUC value 
was slightly better than PM’s, but there was no statistical 

Fig. 5 ROC curves in training, validation, and test sets. AM = adrenal gland 
model; PM = periadrenal fat model; FM = fusion of adrenal gland and peri-
adrenal fat model; CM = clinical model; RN = radiomics nomogram
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Fig. 6 Box plots summarizing rad score and 7 clinical indicators between moderate and severe patient sets in training, validation, and test sets. In each 
box plot, the horizontal line crossing the box is the median, and the bottom and top are the lower and upper quartiles. FM = fusion of adrenal gland and 
periadrenal fat model; CM = clinical model; RN = radiomics nomogram; LDH = lactate dehydrogenase; L = lymphocyte count; Hb = hemoglobin, DD = D 
dimer; WBC = white blood cells count; TT = thrombin time and TP = total protein
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significance. That may indicate that the inner changes 
in adrenal glands were not different from the changes in 
periadrenal fat. Further research is needed to confirm 
whether changes in periadrenal fat were caused by adre-
nal gland inflammatory cells’ infiltration or direct dam-
age of SARS-CoV-2 [25].

Previous research also reported that rather than direct 
damage by SARS-CoV-2 itself, adrenal gland changes 
were believed to be caused by immune overreaction 
or cytokine storm-inducing endocrinological pathway 
impaired through a tight binding mechanism of SARS-
CoV-2 and ACE2 [26]. Endocrinological pathway impair-
ment may be related to the following aspects. First, ACE2 

Fig. 8 Calibration curves of the radiomics nomogram for predicting the disease progression of COVID-19 pneumonia in validation set (A) and test set 
(B). The y-axis represents the probability of COVID-19 pneumonia becoming severe, and the x-axis represents the predicted risk. The dashed line was the 
reference line where an ideal nomogram would lie. The dotted line was the performance of the radiomics nomogram, while the solid line corrected for 
any bias in the radiomics nomogram. MAE is 0.04 in the validation set and 0.075 in the test set

 

Fig. 7 Radiomics nomogram developed in training set with radiomics features, lactate dehydrogenase (LDH), lymphocyte count (L), hemoglobin (Hb), D 
dimer (DD), white blood cells count (WBC), thrombin time (TT) and total protein(TP). Points are assigned for each variable by drawing a line upward from 
the corresponding variable to the Points line. The sum of points plotted on the total Points line corresponds with the severity of patients with COVID-19.
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is highly expressed in human adrenals, which serves as 
the entry receptor for SARS-CoV-2 that is bound to be 
significantly affected. Some work has proposed that the 
imbalanced ACE/ACE2 axis may mediate lung tissue 
repair and wound healing pathways [27]. Second, the 
primary substrate for ACE2 is angiotensin II. ACE2 is a 
negative regulator of the renin-angiotensin-aldosterone 
system (RAAS) by converting the active angiotensin 
and angiotensin II to the inactive angiotensin 1–7 [28]. 
Finally, the SARS virus contains several permutations of 
amino acid sequences with homology to the antigenic 
relevant residues of ACTH [29] that will have potential 
and significant pathophysiological effects due to molecu-
lar mimicry. Potential cross-reactivity of antibodies may 
cause local infiltration with immunocompetent cells in 
adrenal glands [19].

In summary, these aspects suggested that adrenal cells 
and surrounding tissue damage in patients with COVID-
19 may be caused by a viral infection and further second-
ary inflammatory plus autoimmune processes located in 
the adrenal glands. Due to the pandemic of COVID-19, 
scholars have done much research on computer model-
ing of COVID-19. Many diagnostic models are machine 
learning models based on chest CT for detecting 
COVID-19 infection and predictive models for predict-
ing the risk of death, progression of severe disease, or the 
length of hospital stay (30). Among COVID-19 patients, 
the most common predictors of severe prognosis include 
age, sex and radiomics features, C-reactive protein, lac-
tate dehydrogenase, and lymphocyte counts. These 
results are consistent with the univariate logistic regres-
sion analysis (31). There was little evaluation of the cali-
bration of the predictions, and many prediction models 

are mainly based on clinical data (32). Compared with 
other models, we adopted the adrenal grand CT images 
as the study’s data, which could be used in multi-organ 
fusion prediction in the future.

Conclusions
We automatically obtained the ROI from the onset of 
CT images through the auto-segmentation framework 
and inflation algorithm. We proposed and constructed 
an adrenal gland auto-segmentation framework based on 
chest CT images and AI technology. Until now, we have 
not found any research using adrenal gland CT param-
eters as indicators to evaluate the progression in patients 
with COVID-19, especially in the radiomics field. Our 
work has some limitations in the data collection process. 
First, we used the chest CT images as data resources, 
which would affect the visualization and delineation of 
adrenal tissue. However, considering clinical practical-
ity and radiation to patients, there is no need to perform 
another CT scan using professional adrenal glands CT 
parameters to observe adrenal lesions better because 
CT examination of patients with COVID-19 is mainly 
to detect and observe pulmonary lesions. Second, unlike 
other studies, we selected the entire organ as ROIs rather 
than the lesion. The periadrenal fat area may not be pre-
cise and may contain some other indistinguishable tissue 
from the human eye.
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Fig. 9 Decision curve analysis (DCA) for the radiomic model, clinical model, and radiomics nomogram. The y-axis measures the net benefit. Using the 
clinical model, radiomic model, and radiomics nomogram in the study to predict COVID-19 pneumonia progress adds more benefit than the treat all 
patients as severity patients scheme or the treat none scheme. The net benefit of the radiomics nomogram was better than clinical and radiomic models 
in both sets, with several overlaps in the training set
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