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Abstract 

Background Since lung tumors are in dynamic conditions, the study of tumor growth and its changes is of great 
importance in primary diagnosis.

Methods Enhanced area growth (EAG) algorithm is introduced to segment the lung tumor in 2D and 3D modes 
on 60 patients CT images from four different databases by MATLAB software. The contrast augmentation, color 
intensity and maximum primary tumor radius determination, thresholding, start and neighbor points’ designation 
in an array, and then modifying the points in the braid on average are the early steps of the proposed algorithm. To 
determine the new tumor boundaries, the maximum distance from the color-intensity center point of the primary 
tumor to the modified points is appointed via considering a larger target region and new threshold. The tumor 
center is divided into different subsections and then all previous stages are repeated from new designated points 
to define diverse boundaries for the tumor. An interpolation between these boundaries creates a new tumor bound-
ary. The intersections with the tumor boundaries are firmed for edge correction phase, after drawing diverse lines 
from the tumor center at relevant angles. Each of the new regions is annexed to the core region to achieve a seg-
mented tumor surface by meeting certain conditions.

Results The multipoint-growth-starting-point grouping fashioned a desired consequence in the precise delineation 
of the tumor. The proposed algorithm enhanced tumor identification by more than 16% with a reasonable accu-
racy acceptance rate. At the same time, it largely assurances the independence of the last outcome from the start-
ing point. By significance difference of p < 0.05, the dice coefficients were 0.80 ± 0.02 and 0.92 ± 0.03, respectively, 
for primary and enhanced algorithms. Lung area determination alongside automatic thresholding and also starting 
from several points along with edge improvement may reduce human errors in radiologists’ interpretation of tumor 
areas and selection of the algorithm’s starting point.

Conclusions The proposed algorithm enhanced tumor detection by more than 18% with a sufficient acceptance 
ratio of accuracy. Since the enhanced algorithm is independent of matrix size and image thickness, it is very likely 
that it can be easily applied to other contiguous tumor images.
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Introduction
Treatment using radiation is a helpful technique to 
compensate and supplement the lack of chemother-
apy to curb and prevent tumor growth. The optimiza-
tion takes into account the least harm to healthy tissue 
and the greatest possible harm to the tumor. First, the 
plan of the treatment is appraised to establish the field 
size, radiation angle and prescribed dose using size and 
position of the tumor. Lung tumors are one of the main 
varieties of tumors that lead to death in humans. The 
purpose of this research is to recognize the lung tumor 
using reported X-ray computed tomography (CT) 
images. Usually localization and subdivision are uti-
lized as an influential instrument in processing of med-
ical images. These utilizations include the detection of 
edges and tumor sites in the image, the identification of 
the tumor surface and then the postoperative diagnos-
tic phase [1, 2].

Hu et  al. 2001 [3] have represented an automatic 
method for segmentation the lungs images from 3D 
pulmonary X-ray CT imaging, in which the root mean 
square difference between the computer and human 
analysis was 0.8 pixels, 0.54  mm, as averaged over all 
volumes. Silva et  al. 2001 [4] have combined adaptive 
intensity discrimination and geometrical feature in con-
tour extraction and asserted that their algorithm dem-
onstrates a greater agreement to any of radiologists than 
two radiologists between them. Also, Leader et  al. 2003 
[5] have evaluated 101 patients via a proposed lung seg-
mentation including size, circularity and locations fea-
tures by 95% accuracy and 95 ± 52 mL mean difference of 
the total lung volume. Armato et al. 2004 [6] used gray-
level thresholding to segment the lungs and eliminate 
the trachea and main bronchi beside suppression of the 
diaphragm in pleural mesothelioma tumor assessment. 
Meanwhile, Pu et  al. 2008 [7] have introduced a geo-
metric algorithm to smooth the lung border considering 
juxtapleural nodules and adjacent regions by volumet-
ric improvement during one minute. Moreover, Prasad 
et  al. [8] have demonstrated a multi-threshold iterative 
method through polynomial interpolation and morpho-
logic operations to resolve the curvature of the lung bor-
der line to that of the ribs. Simply, some researches have 
shown that the 20% neighboring is reasonable and con-
vinced in thresholding. On the other hand, Pu et  al. [9] 
have presented a technique with radial fitting via defin-
ing implicit function to eliminate troublesome areas and 
find an exclusive surface border through breaking besides 
repairing procedures. Rios Velazquez et al. [10] evaluated 
semiautomatic-segmented and manual volumes besides 
common fractions in macroscopic abnormal lung with 
restrictions in pathological tumor length. But determi-
nation of optimal surface via segmentation has been 

reviewed by Sun et al. [11] by means of a mixed virtual-
desktop reality user interface.

The work presented here is part of a larger effort to 
develop semi-automatic organ segmentation methods 
that speed up and improve the accuracy of the chest 
and breast cancer treatment planning process [12–15]. 
In this way and through considering respiratory system, 
it is crucially important to accurately segment different 
organs such as lungs to facilitate the quantitative analy-
sis and visualization of the clinically significant features 
toward the diagnosis, treatment planning and follow-up 
evaluation. Among several different segmentation meth-
ods, those that are deformation-based are especially 
appealing for our application because they can provide 
smooth boundary and accurately capture the high-cur-
vature features of the lung regions of different patients. 
This is due to the ability of multi-point edge detection 
algorithm to segment anatomical structures with prior 
knowledge about the location, size, and shape of the 
structures. Amini et  al. [16] have suggested a dynamic 
programming algorithm for minimizing function energy, 
which lets adding severe restraints to achieve an appro-
priate behavior of the particular images. However, the 
projected algorithm is slow and has a large complexity in 
number of points in the contour and also in size of the 
neighborhood a point that can exchange during a distinct 
iteration stage [17].

Meanwhile, Cohen [17] has suggested an additional 
force that caused the curve to perform like a balloon 
being inflated through this supplementary force. In addi-
tion to that, Williams and Shah [18] have developed a 
greedy algorithm whose performance is comparable to 
the dynamic programming and the method of calculus 
of variations. They have revealed dissimilar procedures 
for continuity term and appraised several estimates for 
defined curvature term. Relatively, it has been found to 
be comparable in final results, while having less com-
putational cost than dynamic programming with lower 
complexity and being more flexible and stable for incor-
porating severe restraints than the calculus of variations 
method. On the other hand, Radeva et al. [19] have sug-
gested another procedure that include the gradient ori-
entation of the image edge points and implement an 
external force besides a novel potential field to organ-
ize deformation convergence and attraction by both far 
and near edges [20]. Park and Keller [21] introduced a 
new procedure merging watershed transformation and 
dynamic programming and called it Watersnake. This 
new snake procedure is normally utilized to choose 
which points are needed to eliminate unnecessary curves 
while preserving important curves.

Here by this research, an enhanced area growth (EAG) 
algorithm is simply defined to expedite the area growth 
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in lung tumor segmentation with an enhanced accu-
racy. The obtained results are compared to manual seg-
mentations of the lung provided by an expert radiologist 
and with those of previous works, showing encouraging 
results and high robustness of our approach.

Methods
The area growth is one of the methods of segmentation 
and clustering in image processing. The basis of this 
method is to start from a point in the selected region 
and grow based on common features of the neighboring 
points and finally complete clustering of the segment. In 
general, this method is used in three ways: 1) Regional 
method: Segmentation is done only for points that are 
adjacent to each other without any discontinuity. In this 
method, the neighborhood is an essential condition for 
being in a segment. 2) Global method: The neighborhood 
of points is not a criterion and the existence of a com-
mon feature in all points of the image is examined. Then, 
all points that have common features, like color inten-
sity of spots, are segmented. 3) Splitting and merging: 
This method is done in two phases. In the first phase, the 
image is subdivided into different zones and the regional 
algorithm is applied in each of the zones. Then in the sec-
ond phase, the results of all the algorithms are merged. 
Figure 1 compares these three methods.

Since the lung tumor is usually concentrated in a spe-
cific area, therefore in this study, the regional approach 
is examined. In this approach, the growth is started from 
a point which is set by the user. It seems quite reason-
able because the diagnosis of tumor position requires a 
thorough understanding of the lung anatomy and cannot 
be done fully automatically. First, the user requires deter-
mining a point of the tumor, and then all the steps are 
automatically performed to reach the limit of the desired 
region of interest (ROI) with a certain constraint and find 
the tumor edges in segmentation. The region growing is 

a method that can be implemented on both 2D and 3D 
images.

Primary area growth algorithm for 2D and 3D images
The primary algorithm introduced for growing area in 2D 
images is as follows:

1) The desired 2D image of a lung including a tumor is 
selected and named an image.

2) After lungarea appointing, the user decides the 
starting-pixel coordinate for area growth.

3) The seedval command saves the primary value based 
on the color intensity of appointed pixel.

4) The threshval command assesses the threshold by 
20% gray-level default on the whole image.

5) The points command stores the first pixel coordinate 
in a matrix.

6) Based on Fig. 2, the color intensity of 8 adjacent pix-
els near the start pixel is controlled to be at the range 
of first pixel color intensity with suitable accuracy via 

(1)threshval = 20% ∗ graythresh imag

Fig. 1 Types of region growing methods: a) Regional, b) Global, c) Splitting and merging

Fig. 2 Braiding 8 adjacent points around the start pixel in a 2D image
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threshval command, and is then supplemented by the fol-
lowing criteria for the points matrix:

This method is called braiding.
Another time, this criterion is controlled for adjacent 

pixles which are in a braid in the prior stage. Figure  3 
shows this consecutive prodecure till the pixels towards 
the end of the braid are no longer qualified. At this mom-
ment, all selected pixels in the points matrix outline a 
surface as tumor scheme. The farthest pixels are selected 
as the tumor border, which is essentially curved.

The primary algorithm for area growth of 3D images 
is started by selecting the coordinate point (voxel) by the 
user. All of the above steps are exactly the same for the 
voxels. Finally, according to Fig.  4, all the voxels in the 
points matrix that actually form a volume are consid-
ered to be tumor tissue. Also, the furthest voxels found 
are referred to as the tumor border, which actually form 
a shell.

(2)
∣

∣pointval
∣

∣ ≤ threshval + seedval

Advantages of the primary area growth algorithm 
are: a) this technique can relatively accurate identify the 
tumor area; b) the speed of this method is much higher 
than other methods; c) little basic information is needed 
to start the algorithm; d) it is relatively simple to imple-
ment. Of course, this method also has disadvantages, 
which include: a) if the tumor is fragmented, it will not 
be able to identify all the fragments starting from just one 
point, and the tumor continuity is a prerequisite for this 
algorithm; b) in cases where the tumor is attached to the 
lung wall, the growth algorithm may result in an error 
and may cover some of the wall or even the outermost 
part; c) if the color difference between the tumor and the 
primary tissue is too small, the accuracy of the algorithm 
will be reduced.

Enhanced Area Growth (EAG) algorithm
Here, a novel algorithm is presented to upgrade the area 
growth problems and control the regional protocol. The 
EAG method is divided into two parts: pre-procedure 
and main procedure for both 2D and 3D images.

Fig. 3 Applying primary area growth algorithm for 2D images

Fig. 4 8 neighbor voxels (left), and region growing process (right) for 3D images
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Pre‑procedure phase

Contrast augmentation Provisionally, the increase in 
image contrast influences the detected tumor edge that 
decreases the accuracy of the provided segments. In this 
presented work, the primary tumor area is determined by 
primary algorithm, however, the contrast augmentation 
decreases the running time in the early stage. This aug-
mentation brings about the veins to be white dots on the 
image and misguidedly diagnosed as a tumor, and then 
affects the growth of the area. Figure 5 shows the result of 
contrast augmentation in removing white dots for better 
illustration.

Appointing lung area To distinguish between lung and 
tumor regions, the lung limit must first be determined by 
primary algorithm. This step prevents area growth out-
side the lung limit in cases where the tumor has become 
attached to the wall of the lung. Computed tomography 
images are illustrated in white and black colors, so that 
the color intensity is so large for neighbor segments. 

Therefore, applying primary algorithm besides contrast 
augmentation designates the lung limit precisely. On 
the other hand, morphological algorithms along with 
separate anatomy operations may also appoint the lung 
limit for the tumor designation. After the lung limit 
was appointed by lungarea command in MATLAB, a 
restriction is added to the primary algorithm in order to 
select the qualified points for tumor identification inside 
the defined lung limit. Figure  6 illustrates a case when 
appointing lung limit for 2D and 3D images.

Main procedure phase

Area growth constraints Since maximum tumor vol-
ume is apparent during treatment, the algorithm may be 
constrained by considering the growth tumor area rather 
than the entire image. This organization reduces the run-
ning time of the algorithm. To set this constraint on the 
primary algorithm, the user selects a maximum diameter 
for the tumor so that the qualified points are at least one 

Fig. 5 With (a) and without (b) contrast augmentation for better illustration

Fig. 6 Appointing lung limit for (a) 2D and (b) 3D images
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diameter far from the start point in growing. Indeed, the 
algorithm is confined to a circle in 2D input image and to 
a sphere in 3D image. Figure 7 shows this area constraint 
of interest in 2D mode.

Thresholding automatically Automatically, the thresh-
old was determined in order to check the neighboring 
points in 20% default of grey level threshold value of the 
input entire image as a minimum value by the primary 
algorithm. However the tumor borders are not fully real-
ized, here, a 20% local threshold is defined as a new tech-
nique to boost the border identification. By proposed 
technique, the grey level thresholding is defined in the 
constraint area in where the tumor is placed. The color 
intensity of tumor center is determined so that this point 
is the same as the mass center in physics, except that the 
color intensity of each pixel or voxel plays a role in its 
mass. Therefore, the center of the tumor color intensity 
can be calculated from the following equations:

(3)

Xic =
1

IT

n
∑

k=1

I(pi)x(pi)

Yic =
1

IT

∑n
k=1

I(pi)y(pi)

Zic =
1

IT

n
∑

k=1

I(pi)z(pi)

where n is pixel or voxel number of identified primary 
tumor,  IT is the sum of the color intensities of all the 
points mentioned, and I(pi) the color intensity of the 
point i. After finding the center of color intensity, its dis-
tance from the farthest border point of the tumor was 
calculated and then five units added to it. Afterward, in 
2D mode by a circle and in 3D mode by a sphere with 
a radius of calculated value and center of color intensity 
is considered and subsequently this area used to deter-
mine the new threshold. That is, the new threshold limit 
is defined as 20% of the grey threshold of the tumor area 
and the primary algorithm is applied starting from the 
previous start point with this new threshold. Figure  8 
shows an example of how the threshold is determined 
automatically.

Definition of comparison quantity At all stages of the 
primary algorithm, the color intensity of the local points 
is examined with the start point value. If we move away 
from the start point, there is a possibility of an error. In 
order to increase the accuracy and decrease the error, 
it is suggested that the area growth of the comparison 
quantity be modified at each level of the algorithm to 
the mean of the points recognized as tumors up to this 
level. Up until now, if the number of points recognized is 
n points, the comparison quantity is modified as follows:

and I(pi) is the color intensity for point i.

Area growth from several start points Given that the 
start point of the algorithm is determined by the user, 

(4)seedvalmodified =

1

n

∑n

i=1
I(pi)

Fig. 7 Area growth constraint established upon primary algorithm

Fig. 8 Automatically finding a local threshold
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it is obvious that every time we run the primary algo-
rithm and start from diverse points, different results are 
achieved. In order to improve the accuracy of the final 
result, it is suggested to run the growth algorithm start-
ing from several dissimilar points. Nonetheless, the user 
still determines simply a start point, and the other points 
are rationally chosen from the total tumor volume or sur-
face in the following distinct rout. In the meantime, the 
independence of the final result from the start point is 
largely ensured. This route is:

1) By running the primary algorithm on the start point 
determined by user, the geometric center of the 
tumor is settled (Obviously in 2D mode there is no 
need to calculate z.),

2) By this new coordinate, the tumor is divided into 
4 and 8 sectors for 2D and 3D modes, respectively. 
Accidentally, a point is selected in each sector.

3) The primary algorithm starts with 5 points in 2D 
mode and 9 points in 3D mode, where one of them is 
the center of the tumor.

4) The specified new-fangled tumor comes from the 
interpolation between the tumors established in the 
previous stage. Figure 9 shows the designating differ-
ent start points for enhanced area growth algorithm 
in 2- and 3-dimensional growth.

Improvement of tumor edges In some cases, after find-
ing the border of tumor, the relevant edges are not 

(5)
Xcenter =

1

number of voxels

∑

(x,y,z)x

Ycenter =
1

number of voxels

∑

(x,y,z)y

Zcenter =
1

number of voxels

∑

(x,y,z)z

completely distinguished. So, the edges are improved 
in the last step by the proposed algorithm. This edge 
improvement procedure partitions the entire angle of 
view to eight subsections for 2D mode and the entire 
solid angle to 16 subsections for 3D mode. In that case, 
one point is selected from each subsection by chance. 
Afterwards, three units go off in different directions 
from the tumor center toward start points on the edges 
derived from primary algorithm. Here, thresholding is 
utilized by 10% in place of 20%. Then, implementation 
of EAG algorithm on these new points generates a new 
subsection which can be appointed as follows: the new 
subsection is thrown out if: i) its median is less than the 
primary tumor median minus three times the standard 
deviation, ii) its surface ratio in 2D or volume ratio in 
3D to the primary tumor section is greater than 0.2; or 
else the new subsection is joined to the primary tumor 

Fig. 9 Designating different start points in 2D and 3D modes towards enhanced area growth

Fig. 10 Edge improvement process in 2D mode by introducing new 
points around the primary tumor segment
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section. Figure 10 shows a schematic of the algorithm in 
2D mode to come up an enhanced algorithm.

Enhanced area growth algorithm
The stages of the enhanced algorithm for 2D mode are 
optimized as follows:

i) After calling lung 2D image, the contrast is aug-
mented.

ii) By MATLAB, the lungarea command is appointed 
on the anatomy and the pixel of start point desig-
nated by the user. Then, seedval command saves the 
primary value based on its color intensity.

iii) radiusval command is utilized to define the maxi-
mum radius of the specified tumor.

iv) threshval command is used for the entire input image 
by 20% grey threshold.

v) The first pixel coordinate is saved in matrix points. 
Next, eight surrounding pixels are inspected to see 
their color intensities are within the range of the first 
start point inside the determined lung area of stage 
ii. Besides, their distances are no more than twice as 
large as the maximum radius anticipated in stage iii. 
All these points are inserted into the matrix if the 
point value is between the primary (start) value ± the 
threshold value.

vi) The primary or start value is modified to the points’ 
median based on the prior stage in the braid.

vii) These modified surrounding pixels are re-
inspected under stage v circumstances to generate 
new points values. This route is valid till the pixels 
are no longer qualified and the braiding is finished. 
Therefore, all points in the matrix shape a shell as 
tumor border.

viii) The maximum distance between primary (color 
intensity center) and new tumor borders is estimated. 
By defining a circle with the primary tumor border 
and adding 5 units to the estimated maximum dis-
tance, another new tumor area is created. Again for 
this area, new threshold is 20% of the grey threshold 
value.

ix) The stages v to vii are re-performed by selecting the 
start point, and then the new threshold is dedicated 
in the stage viii to estimate the new tumor border.

x) The tumor is partitioned to four subsections from 
the center point and a point is accidentally selected 
within each subsection. Then, stages v to ix are re-
performed for these five points in order to specify the 
new tumor border via interpolation between these 

(6)seedvalmodified = median (Ipoints)

five points. Subsequently, the eight lines at different 
angles (0, 45, 90, 135, 180, 225, 270 and 315 degree) 
from the center point are drawn to delimit the points 
of intersection with the tumor borders. Afterwards, 
it’s three units away from the boundary, with eight 
points for edge improvement.

xi) Once more, stages v to vii are repeated by consider-
ing these new eight points with 10% threshold, and 
partitioned to eight growth areas. Each subsection is 
linked to the main area by satisfying two conditions: 
{median (new area) > median (primary tumor) – 
3*standard deviation (primary tumor)}, and the ratio 
of new surface to primary tumor surface is less than 
0.2. Eventually, the obtained surface is delineated as a 
segmented lung tumor.

According to Fig. 11, most stages of the enhanced algo-
rithm in area growing for 3D images are as 2D ones, in 
which a 3D image is first uploaded and the coordinate 
of the start point (voxel) is determined by the user. By 
stage v, the braiding is performed for 26 voxels consider-
ing corresponding conditions. Meanwhile by stage x, the 
tumor center is partitioned to 8 subsections and we have 
a total of 9 points via selecting one point in each subsec-
tion by chance. After finding 9 tumor boundaries and 
interpolation between them, the new tumor boundary 
is determined to achieve 16 points for edge correction 
via intersections with the tumor boundaries at angles 
of -180, -90, 0, 90, and -90, -45, 0, 45 degrees from the 
tumor center. At last, these obtained 16 new points with 
a threshold of 10% partitioned to 16 grown areas. Con-
sidering the conditions in stage xi, we will finally reach 
the segmented tumor in 3D mode.

Lung CT images
Three official websites — LCA Laboratory (Lung Can-
cer Alliance) [22], DIR Laboratory (Deformable Image 
Registration) [23], NSCLC (non-small cell lung cancer) 
from the Cancer Imaging Archive (TCIA) Public Access 
[24], and LIDC (Lung Image Database Consortium) 
[25] — were utilized as reference ratings to evaluate the 
presented algorithm on lung tumor CT images. No per-
missions are required for use of the data and it is pub-
licly available on these laboratory websites. Occasionally, 
image formats are different from the accessible informa-
tion. In order to integrate the EAG algorithm besides the 
comparability of the outcomes, all formats and numbers 
were doubled and normalized to 1 and 0. Table 1 shows 
these images for both males (M) and females (F). All 
images have been taken with CT in DICOM format and 
also contain a tumor.

All MATLAB implementations were done with Intel 
Core 2 Duo T6670 / 2.2 GHz processor. It was executed 
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for both 2D and 3D images, but the images shown are 
mostly 2D except for the final algorithm which also 
shows 3D images.

Statistical analysis
In this survey, Dice coefficient was also utilized to assess 
the performance of the segmentation algorithms quanti-
tatively. Given A as a segmented structure, B as a ground 
truth structure, and |*| which signifies the size of a binary 
set, hence the Dice coefficient [26, 27]  Cdic is presented as:

This coefficient denotes the ratio of the overlapped 
area between the segmented area and the truth area 
(0 ≤  Cdic ≤ 1). Its maximum amount is 1 when the seg-
mented area is identical to the truth area, and its 

(7)Cdic =
2|A ∩ B|

|A| + |B|

Fig. 11 Flowchart of Enhanced Area Growth algorithm for 3D images

Table 1 The lung CT images utilized from DIR, LCA, NSCLC, LIDC 
labs [22–25]

Laboratory Age and sex Size of image Number of image

DIR Dissimilar ASL Different dimensions 1–5

LCA Dissimilar ASL Different dimensions 6–10

NSCLC Dissimilar ASL Different dimensions 11–30

LIDC Dissimilar ASL Different dimensions 31–60
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minimum amount is 0 when the segmented area com-
pletely misses the truth area.

To analyze the statistical behavior, a Student t-test was 
performed via assuming a normal distribution for two 
independent samples of the metric amounts. The p-value 
was calculated from 60 images using the acquired metric 
amounts. The data point numbers were enough large to 
undertake a normal distribution for the recorded mean 
metric for both algorithms supporting the t-test. Also, a 
significance level of 5% was assumed to indicate a major 
difference between the algorithms performances for a 
specified metric.

Results
Contrast augmentation
First, a contrast improvement was made for each image 
in implementation. Imadjust command was utilized to 
boost the contrast in 2D mode. Since there is no ready 
command in MATLAB for 3D mode, it was defined a 
function as imadjust3d to increase the contrast. Figure 12 
shows an example of contrast augmentation and its effect 
on the result of the primary algorithm. As the contrast 
increases at first, a clear image of the designated tumor 
is obtained. In Table 2, the differences in obtained results 
have been given. By increasing the contrast, the number 
of pixels decreases and processing time also reduces.

Appointing lung area
In many cases it has been observed that the tumor 
attaches to the lung wall, making it difficult to detect 
the tumor accurately. For this reason, the lung area is 
first determined. Figure  13 shows the result of speci-
fying the lung area before applying the area growth 

Fig. 12 Implementing a temporary increase in contrast: a) without b) with increasing contrast

Table 2 The average data applied for DIR, LCA, NSCLC, and LIDC 
labs

Status The number of 
pixels specified

Elapsed time (s)

without increasing contrast 994 0.35

with increasing contrast 566 0.28

Time saving – 20%

Fig. 13 Appointing lung area before applying the algorithm: a) 
with b) without segmentation. c Result of finding lung tumor area 
with segmentation at the beginning of the algorithm
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algorithm. As can be seen in Fig.  13b, failure to spec-
ify the area has led to a major error in process of the 
growth algorithm and its interference in the lung wall. 
But in Fig.  13c, the algorithm is successfully imple-
mented by specifying the lung area at the beginning of 
the process.

On the other hand, constraint in growing area can be 
helpful in better diagnosis. Apparently by Fig.  14, this 
constraint has hindered the area from misguidedly join-
ing the lung wall. The maximum expected radius for the 
user-defined tumor is 70 and 50 units for patients 1 and 2 
(Table 1), respectively.

Discerning threshold automatically
Figure  15 shows an example of execution of the auto-
matic threshold recognition technique. Figure 15a refers 
to a circumstance where the preliminary threshold value 
was totally considered 20% of the grey threshold. Here, 
the grey threshold is 0.48 and threshold amount is 0.096. 
Following discerning initial tumor, the coordinate of the 
color intensity of the tumor was appointed and 34 units 
were detected for the maximum distance from this tumor 
center. Then, a circle with 5 radius units was depicted 
surrounding the tumor as shown in Fig. 15b. In this situ-
ation, the 20% threshold is 0.128 and the grey threshold 
is 0.64. Moreover, the histogram of the whole image in 
Fig.  15a and the targetarea histogram in Fig.  15b show 
the shift of the peak to 1, namely the bright colors, which 
also show the grey threshold shift.

Furthermore, in this research, modifying the compari-
son quantity of color intensity (Eq. 4) has been applied at 
each step of the algorithm. According to Fig.  16 by this 
modifying, the image was improved and the tumor edges 
were also better covered. Also, Fig. 17 shows the compar-
ison quantity alterations at different steps that decrease 
the color intensity as the steps progress.

The results of growth from various points
Figure  18 shows the performing of the growth begin-
ning from various points. After the primary tumor 
was appointed, the geometric center of the tumor is 
resolved by the point p1. Then, the tumor is partitioned 
to four subsections by the p1 center to determine 
p2 to p5 points, the locations of which are shown in 
parenthesis.

This growing continues surrounding each of the five 
points and the outcomes have been displayed indi-
vidually in Fig. 19. The final image merges the multiple 
growing to create a more accurate image of limiting and 
delineating the tumor area.

The method presented, growth starting from several 
points, guarantees the independence of the final result 
from the start point. Despite the start from different 
points, Fig.  20 shows that the obtained image is inde-
pendent of the start point. The start point appointed by 
the user has been shown in each image.

Improvement of tumor edges and EAG Algorithm
By determining the center point in 2D mode, eight 
points are chosen with the same angles and three 
pixels’ distance from the tumor edge. A total of nine 
points are candidates to improve the edges and grow 
the area by 5% threshold, as shown in Fig.  21. Each 
designated point identifies a section around the 
edge and is validated in accordance with the con-
ditions set out in the Methods section. The growth 
results from each of these points have been shown 
in Fig. 22.

Also the coordinates of the chosen points on the 
edges and the accuracy of their result have been shown 
in Table 3.

Only a few specified points on the edges are suitable 
for creating new subsections and can then be joined 

Fig. 14 The result of the constraint on growth area by radius of 70 (Left) and 50 (Right) units
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to the primary area, as shown in Fig.  23 by segment 
acquired.

For instance, the final results of the EAG algorithm 
when applied to 2D and 3D images have been illus-
trated in Figs. 24 and 25, respectively.

Area growth process
Figure  26 shows the number of pixels in the braid 
examined and not yet qualified for the tumor points. 
At the beginning of the graph, the pixels in the braid 
are increasing until no more new pixels are braided and 
the chart starts to sink. As long as all the target pixels 
are examined, the chart reaches zero. The fluctuations 

Fig. 15 Discerning threshold values for: a) preliminary and b) automatic styles
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in the descending part of the chart show the extent of 
roughness on the outer edge of the tumor.

Figure 27 shows the number of pixels that have been 
identified as tumor points. Obviously, this chart will 
always be bullish.

Fig. 16 Obtained images from comparison quantity of color intensity for a) preliminary and b) modified implementation

Fig. 17 Color intensity variations at different steps of the algorithm in automatic thresholding
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Discussion
Scheming a volume suitable for the maximum flow 
analysis requires the minimum section related to the 
maximum flow that can be regarded as an optimal seg-
mentation. A more computationally feasible technique 
has recently been proposed by Sun [28], while Roy 
and Cox [29] have established a version of maximum 
flow examination. In order to efficiently achieve a 3D 
maximum surface, a two-stage dynamic programming 
(TSDP) method has been introduced, which allows the 
computation of a dense disparity map [30]. Because the 
projected volume works directly in true 3D coordinates, 
he aimed to output a 3D surface in his suggested voxel 
volume formulation that represents the entire 3D scene 
rather than utilizing a disparity map to generate a 2.5D 
sketch of the scene [31]. Formulating the 3D recon-
struction problem as a segmentation issue has some 
benefits over using the classical dynamic program-
ming method. With segmentation, the optimization is 
performed along a surface and not along a line. Conse-
quently, it offers the advantage of segmentation proce-
dures to output outlines that wrap back on themselves, 
while dynamic programming will have trouble follow-
ing these concave surfaces. Instead of reformulating 

Fig. 18 Selected points in initial tumor to begin growth from several 
points by p1 center position of (180,334). The other (x,y) locations are: 
p2 (165,328); p3 (196,329); p4 (192,342); p5 (173,344)

Fig. 19 Growth from various points of Fig. 18 to delineate the tumor area
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dynamic programming or similar methods to model 
concavities and occlusions in 3D reconstruction, the 
EAG algorithm provides a distinct segmentation by rel-
evant angles from tumor center. Leung [30] has applied 
a dynamic programming (DP) algorithm to the metric 
volume to segment the volume without surface evolu-
tion calculations, but it observed that a DP examination 
of the metric volume is meaningless. This is because 
applying DP indicates a disparity solution, and since a 
disparity solution is a 2.5D sketch, a multi-valued solu-
tion, i.e. the curve winding backwards on itself is not 
possible. Adversely, the DP algorithm assumes that the 
volume is Euclidean.

In this study, four dissimilar databases from differ-
ent labs were used to test each part of the proposed 
method. In addition, the range of tumors was manu-
ally determined in all images (referral websites [22–
25]) by an expert radiologist and physician. Finally, 
the obtained results were compared with the existing 

results and the acceptance percentage rate were evalu-
ated. The pre-processing was performed in two modes, 
with and without augmenting contrast of the area 
growth algorithm, and the results have been presented 
in Table 4. By raising contrast, the early time of growth 
improved in all cases.

The accuracy of “lung area appointing” and “growth 
area constraint” cannot be confirmed by investigating 
the acceptance rate. Since these two factors represent 
an essential reorganization in specimens in which the 
tumor is affixed to the lung wall, failure to complete 
these two stages may result in a serious inadequacy in 
the algorithm for the growth of the area. Table 5 evalu-
ates the rate of acceptance for thresholding default and 
automatic besides modifying “comparison quantity” in 
each stage. Consequently, modifying comparison quan-
tity and auto-thresholding demonstrated an acceptance 
ratio of a maximum of 12% and 15% increase for LCA 
and NSCLC databases, correspondingly.

Meanwhile, Table 6 shows the results of the two cases 
when the growth algorithm starts at one point or sev-
eral points. As can be seen from these results, the pro-
posed method has represented a significant impact on 
the acceptance rate.

Moreover, Table  7 shows the results of the edge 
improvement at the end when the edges are corrected 
or not. As can be seen from these results, the edge cor-
rection at the final step has had a great influence on the 
acceptance rate by a maximum of 13% difference for 
image LIDC database.

Finally, an enhanced algorithm covering all preceding 
procedures was implemented on 60 input images. The 
results shown in Table  8 revealed that this enhanced 
algorithm could largely achieve tumor segmentation 
with sufficient accuracy in a large number of images 
compared to the primary algorithm. The maximum 
and minimum AR differences in implementing these 
algorithms were 13% and 5% for images DIR and LCA, 
correspondingly.

The lung density is normally affected by parameters 
like imaging protocol, physical material characteristics 

Fig. 20 Independence of the growth algorithm result from the start point

Fig. 21 Nine detected points to improve the tumor edges
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of lung parenchyma, pressure of trans-pulmonary, air 
volume, and tissue volume. These parameters make it 
difficult to choose a grey scale segmentation threshold 
because diverse subjects are probably to need diverse 
thresholds. Some reports have utilized a single or mul-
tiple predetermined thresholds to separate the lungs 
from the surrounding anatomy [32, 33]. Here in pre-
sented algorithm, automatic thresholding was used to 
select a threshold based on the local characteristics of 

the color intensity to increase the border recognition. 
As shown in Table  5, the maximum acceptance rate 
from the effect of thresholding automatic and modi-
fying the comparison quantity in each stage brought 
about 83% (LIDC) and 75% (LCA and NSCLC), respec-
tively. This thresholding is also anticipated to work 
better for deviations in lung volume where there are 
major alterations in lung density.

Fig. 22 Region growth result at selected points on the edges
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The parameter of Recall [True Positives/(True Posi-
tives + False Negatives)] measures the proportion of the 
positive examples that are correctly identified, while 
the parameter of Precision [True Positives/(True Posi-
tives + False Positives)] evaluates the proportion of the 
nominated positive examples that are correct. Thus 
unlike, the false positive rate, it is not dominated by the 
large number of non-lung boundary pixels. Table 9 sum-
marizes the individual power values measured for differ-
ent databases.

Mesanovic et  al. [34] have introduced an automatic 
segmentation algorithm in which the region grows 
using a hole-filling operation that cannot accurately 
detect the pulmonary nodule attached to the pleura 
and ribs. Meanwhile, Bellotti et al. [35] have presented 

an active contour model in region growing and nodule 
detection, so that the segmented volume is reduced to 
about 15% of the original total volume and about 25% 
of the chest volume. Although their start points were 
different when selecting the sectional images, the 
detection rate was 80% by 2.47 false positive results per 
15 number of CT scan. In this study with an enhanced 
algorithm, the minimum acceptance rate for the growth 
of the tumor area is 88% for DIR database according to 
Table 8.

In this study, the obtained dice coefficient was near 
each other for both the primary and enhanced algo-
rithms, respectively, by 0.80 ± 0.02 and 0.92 ± 0.03. It 
was found that the primary algorithm tends to have 
greater segmentation variation of 60 image frames 
with a less error rate in comparison with the pervious 
study using only four patients CT images [36]. Besides, 
the p-value of these dice coefficients was less than 0.05 
derived from the pairwise Student t-test between two 
algorithms.

Kalpathy-Cramer et  al. [37] have compared the per-
formance of three lung nodule segmentation algo-
rithms via spatial overlap and volume measurements. 
Their results revealed that the concordance correlation 
coefficient for algorithmic determination of nodule 
volume were 0.997 and 0.836, respectively, for repeat-
ability and reproducibility by 95% confidence interval. 
In addition to that, the mean dice score was 0.95 ver-
sus 0.81 (p < 0.001 of Wilcoxon rank sum test), corre-
spondingly, and typically was greater for larger nodule 
volumes. Therefore, this underscores the suggestion to 
utilize the same software at all-time points in longitu-
dinal researches and when measuring factors such as 
tumor doubling time.

Jiang et  al. [38] have presented a resolution-resid-
ual-neural-network method via concatenating fea-
tures computed simultaneously at multiple image 
resolutions in dense and incremental ways. Their 
selected tumors locations were within lung paren-
chyma, attached to the chest wall, and adjacent to 
mediastinum in dissimilar sizes. Regardless of tumor 
size and location, they did not utilize 3D convolu-
tions specially for tumors attached to mediasti-
num in longitudinal and slice-wise segmentation via 
ROI-founded training framework. In computing the 
overlap between the segmentation outcomes and 
the ground truth, their best performing method had 
a dice similarity coefficient by 0.75 ± 0.12. Since the 
tumor in the patients with acquired resistance is dif-
ficult to distinguish from the abutting mediastinal 
pleura at later time points, their algorithm outcomes 
were not perfect in the over-segmentation process, 

Table 3 The coordinates of the selected points to improve the 
edges and their accuracy

Point Coordinate (x,y) Accuracy

P1 (219,250) yes

P2 (281,250) no

P3 (280,188) yes

P4 (219,132) yes

P5 (177,209) yes

P6 (146,250) yes

P7 (175,193) yes

P8 (219,340) yes

P9 (300,331) yes

Fig. 23 The final image from edges improvement by EAG algorithm
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apart from stopping at a maximum epoch number of 
100 in overfitting prevention.

Reamaroon et  al. [39] have evaluated an image 
processing algorithm for lung segmentation in chest 
radiographs via Total Variation-based Active Con-
tour (TVAC) by 0.86 ± 0.04 average Dice coefficient 
against 0.74 and 0.64 for random walker and active 
spline algorithms, respectively. Osareh and Shadgar 
[40] have presented a segmentation technique based 
on region aided geometric snake for lung cavities 

that their model integrated the gradient flow forces 
with region constraints provided via fuzzy c-means 
clustering by maximum 0.962 precision. Meanwhile, 
Kumar et  al. [41] have presented a freehand schem-
ing using multi-seed points for selection of ROI 
along with geometric modeling and implicit surface 
reconstruction in volumetric nodule extraction. They 
estimated a discrepancy in their suggested scheme 
and the manual contouring to be 3.04 ± 1.7  mm and 
an accuracy of about 70%, but the average accuracy 

Fig. 24 Implementation of EAG algorithm on 2D images
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reported in edge detection has been around 57% 
while the segmentation errors has been occurred near 
the nodules boundary. Despite the methods used to 
segment lung nodules, it remains a challenge to reach 
an acceptable performance limit in user interactions 
and to adjust several parameters to achieve satisfac-
tory performance.

Here, morphological operators were used to define 
the lung regions through automatic thresholding along 
with erosion and dilation operations by removing the 
background air, then extracting the lung from the tho-
rax area, and finally refining the boundaries of the lung 
region (p-value < 0.05) [42]. Segmentation accuracy was 

evaluated by calculating the similarity between the seg-
mented region and its corresponding ground truth. 
Table  10 compares the resulting average accuracy of the 
suggested algorithms with recently reported algorithms 
for tumor region expansion and lung nodules detection 
from CT images.

Here in this survey, the proposed algorithm via 
appointing lung area beside automatic threshold-
ing and also starting from several points along with 
edge improvement may diminish the human errors in 
interpreting tumor areas and selecting start point of 
the algorithm by radiologist. The EAG algorithm may 
be integrated with other methods to precisely align 

Fig. 25 Implementation of EAG algorithm on 3D images. The lung and tumor regions are shown in yellow and red, correspondingly
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the acceptance percentage. Also, thresholding can be 
tuned by a color intensity procedure in order to grow 
the tumor area perfectly. The proposed algorithm has 
limitations as it can only be applied to a specific area 
and may not be considered accurately for nodules on 

the pleura and juxtapleural nodules because the choice 
of the initial starting point of the algorithm is left to 
the user and not entirely can be selected automatically. 
Since the thresholding procedure includes only 20% 
of adjacent points by default, it is necessary to explore 

Fig. 26 Number of pixels in the braid at consecutive steps of the algorithm to check for tumor discretion

Fig. 27 Number of points identified as tumor at different stages of the algorithm
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different ranges of the threshold in the next studies. In 
the proposed algorithm, the size of the tumor is deter-
mined visually by the user, which can be done from 
one starting point or several starting points. Since 
the diffusion mass transfer equation can describe the 
tumor growth and disease speed ratio through numeri-
cal modeling, the future study will examine this topic. 
Generally, this issue depends on many factors like age, 
gender, weight or size, biochemical environments, 
genetic predisposition and etc. In this study, starting 
the growth algorithm from multi-point created precise 
tumor edges. The algorithm also guarantees the inde-
pendence of the results from the starting point. Future 
work may address the metastasis tumor area identi-
fication by fuzzy interface system and artificial neural 
network to differentiate between benign and malignant 
lung nodules.

Table 4 The effect of increasing contrast on average decreasing growth time

Database Initial growth time without increasing 
contrast (s)

Initial growth time with increasing 
contrast (s)

Time reduction

DIR 6.07 3.62 40%

LCA 9.59 8.11 15%

NSCLC 4.57 2.90 37%

LIDC 3.01 2.56 15%

Table 5 Acceptance rate (AR) from the effect of thresholding automatic and modifying the comparison quantity in each stage

Database AR without modifying the comparison 
quantity in each stage

AR with modifying the comparison 
quantity in each stage

AR with thresholding 
20% default

AR with 
thresholding 
automatic

DIR 58% 66% 70% 81%

LCA 69% 75% 65% 77%

NSCLC 60% 75% 61% 69%

LIDC 59% 69% 74% 83%

Table 6 The effect of starting the algorithm from one or more 
points on the accuracy of the results

Database AR starting from one 
point

AR starting 
from several 
points

DIR 85% 91%

LCA 70% 88%

NSCLC 80% 92%

LIDC 77% 89%

Table 7 The effect of edge improvement at the final step on the 
accuracy of the results

Database AR without edge 
improvement

AR with edge 
improvement

DIR 78% 90%

LCA 85% 93%

NSCLC 79% 89%

LIDC 80% 93%

Table 8 AR amounts from implementing primary and enhanced 
algorithms in tumor area growth (p-value < 0.05)

Database Primary algorithm AR Enhanced 
algorithm 
AR

DIR 78% 90%

LCA 85% 93%

NSCLC 79% 89%

LIDC 80% 93%

Table 9 Recall and precision parameters in comparison of 
primary and enhanced algorithms

Database Primary algorithm Enhanced algorithm

Recall Precision Recall Precision

DIR 0.85 0.88 0.9 0.92

LCA 0.83 0.89 0.91 0.93

NSCLC 0.9 0.88 0.92 0.93

LIDC 0.89 0.87 0.91 0.90
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Conclusion
The proposed method is independent of whether the 
image is homogeneous or symmetrical or not, and is also 
independent of the matrix size, since the image segmen-
tation is first defined by thresholding around the initial 
tumor and then by assigning points and expanding them. 
The projected algorithm enhanced tumor detection by 
more than 18% with a sufficient acceptance ratio of accu-
racy. Since the enhanced algorithm is independent of 
matrix size and image thickness, it is very likely that it 
can be easily applied to other images by first threshold-
ing around any initial contiguous tumor, then assigning 
points and expanding this through interpolation. Further 
studies in the future will address the physical and biolog-
ical phenomena of tumor growth for other images from 
different imaging modalities.

Abbreviations
CT  Computed tomography
EAG  Enhanced area growth
LCA  Lung Cancer Alliance
DIR  Deformable Image Registration
AR  Acceptance rate
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Uzelaltinbulat et al. 2017 [45] 97.1% 70 LIDC
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Xu et al. 2019 [47] 99.1% 2460 various databases
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