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Abstract
Purpose  This study aimed to develop and validate a deep learning-based method that detects inter-breath-hold 
motion from an estimated cardiac long axis image reconstructed from a stack of short axis cardiac cine images.

Methods  Cardiac cine magnetic resonance image data from all short axis slices and 2-/3-/4-chamber long axis slices 
were considered for the study. Data from 740 subjects were used for model development, and data from 491 subjects 
were used for testing. The method utilized the slice orientation information to calculate the intersection line of a short 
axis plane and a long axis plane. An estimated long axis image is shown along with a long axis image as a motion-
free reference image, which enables visual assessment of the inter-breath-hold motion from the estimated long 
axis image. The estimated long axis image was labeled as either a motion-corrupted or a motion-free image. Deep 
convolutional neural network (CNN) models were developed and validated using the labeled data.

Results  The method was fully automatic in obtaining long axis images reformatted from a 3D stack of short axis 
slices and predicting the presence/absence of inter-breath-hold motion. The deep CNN model with EfficientNet-B0 
as a feature extractor was effective at motion detection with an area under the receiver operating characteristic (AUC) 
curve of 0.87 for the testing data.

Conclusion  The proposed method can automatically assess inter-breath-hold motion in a stack of cardiac cine 
short axis slices. The method can help prospectively reacquire problematic short axis slices or retrospectively correct 
motion.
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Introduction
Cardiovascular disease is the primary cause of death in 
developed countries and includes heart failure, arrhyth-
mia, valve disease, and coronary artery disease [1]. Heart 
failure develops when the heart does not pump the blood 
sufficiently to the body’s needs. Left ventricular (LV) 
ejection fraction is considered as an important biomarker 
for the assessment of heart failure [2]. Cardiac cine mag-
netic resonance imaging (MRI) enables quantification 
of the LV ejection fraction with high spatial resolution 
images [3]. Cardiac cine MRI typically requires mul-
tiple breath-holds to cover the entire LV with a stack of 
short axis slices, and patients may perform breath-holds 
in different respiratory positions, potentially leading 
to inconsistency in the heart location and irregularity 
in the ventricular septum (Fig.  1) and thus to potential 
inaccuracy in the LV diastolic/systolic volumes and in 

three-dimensional (3D) modeling of the LV [4]. Detection 
of misalignment of cardiac cine short axis slices is neces-
sary for image quality assessment and for further analysis 
and visualization [5]. Alignment of cardiac cine short axis 
slices has implications for improved 3D visualization of 
the LV. Previous related studies investigated motion cor-
rection between short axis and long axis cine slices [6, 7] 
for cardiac image analysis. Swingen et al. estimated the 
magnitude of the misregistration of a short axis image of 
the heart and aligned the center of gravity of each short 
axis slice’s endocardial contour for breath-hold motion 
correction [5]. The motion correction involved iterative 
minimization of a cost function that includes displace-
ments between intensity profiles of the intersected lines. 
A drawback of the method was large computation time. 
Another approach for motion correction in cardiac cine 
images is to delineate the LV contours manually on both 

Fig. 1  Examples of (a) no inter-breath-hold motion (blue arrow) and (b) inter-breath-hold motion (red arrow) in long axis slice images estimated from a 
stack of short axis slice images
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long axis and short axis image planes and register all con-
tours using a two-step iterative closest point algorithm 
[8]. A drawback of the method is large computation time 
taken to manually segment the contours, taking approxi-
mately nine minutes per case.

Deep learning has been extensively used for cardiac 
image analysis with the aim of automatically classify-
ing diseases, identifying cardiovascular disease risks, 
segmenting regions of interest, generating high qual-
ity images, and estimating biomarker quantities [9–11]. 
Several deep learning methods for cardiac image clas-
sification have been demonstrated in the literature. For 
example, view classification in echocardiographic images 
with deep convolutional neural network (CNN) has 
been demonstrated to accurately classify five standard 
views (long axis, short axis, 2-chamber, 3-chamber, and 
4-chamber) [12]. Also, cross-sections of the coronary 
arteries in coronary computed tomography (CT) angi-
ography were used to train and validate the presence/
absence of motion artifacts using deep CNN [13]. How-
ever, to the best of our knowledge, there have been no 
studies that demonstrate the performance of deep CNN 
models in classifying the presence of motion from car-
diac long axis cine MRI images, which are reformatted 
from a 3D stack of short axis slices.

In this study, we present a deep learning-based method 
that classifies the presence or absence of the inter-breath-
hold motion from an estimated long axis slice image. 
Training data are generated using a tool that enables the 
user to annotate the presence/absence of motion based 
on visual inspection of a long axis slice image recon-
structed from a stack of short axis slices, along with an 
acquired long axis slice image as a reference. This facili-
tates the generation of training data for supervised 
learning of inter-breath-hold motion detection models. 
Finally, a variety of deep CNN classification models are 
developed using training data, and they are validated on 
unseen testing data.

Methods
Data
In the present study, we used publicly available data from 
the LV cardiac MRI segmentation challenge [14] (referred 
to as CAT) and the Kaggle 2nd Annual cardiac challenge 
(referred to as KAG) (https://www.kaggle.com/c/sec-
ond-annual-data-science-bowl). Table  1 summarizes the 

numbers of subjects considered for each dataset in model 
development and testing. First, cardiac cine DICOM 
(Digital Imaging and Communications in Medicine) [15] 
data from all short axis slices and several 2-/3-/4-cham-
ber long axis slices from 185 subjects were considered 
for the CAT dataset. Second, cardiac cine DICOM data 
from all short axis slices and 2-/4-chamber long axis 
slices from 1,046 subjects were considered for the KAG 
dataset. Image acquisition parameters were as follows: 
steady-state free precession (SSFP) sequence, slice thick-
ness ≤  10 mm, inter-slice gap ≤  2 mm, repetition time 
(TR) = 30–50 ms, echo time (TE) = 1.6 ms, flip angle = 
60°, field-of-view (FOV) = 360  mm, spatial resolution = 
0.7031–2.0833 mm2 [16]. From the dynamic cine image 
frames of 20–30, we considered the initial time frame, 
which corresponds to the end-diastole.

Preprocessing
Figure  2 shows a flowchart of the current method. Fig-
ure 2a illustrates a flowchart of training data generation, 
while Fig.  2b shows a block diagram of deep learning 
model development and testing. A software tool was 
developed in Python 3.10. Intersecting lines were calcu-
lated based on the pixel spacing, image position, and slice 
orientation in the DICOM header information. A pair 
of the original long axis image and the same orientation 
view of an estimated long axis image was obtained. The 
estimated long axis image was reconstructed from a 3D 
stack of short axis images after slice reformatting based 
on the slice orientation information. The user interface 
tool shows a long axis image as a reference (the left image 
in Figure S1 of the Supplemental Material) and an esti-
mated long axis image (the right image in Figure S1 of the 
Supplemental Material). Slice navigation bars are located 
above the three images to change either the long axis 
view or the slice number of the short axis view. The tool 
was effective in debugging the code for the generation of 
the estimated long axis image. The estimated long axis 
slice images and original long axis images of the same 
orientation were saved as .png files. In addition, as shown 
in Fig.  3, Plotly (v4.9.0) was used to visually check the 
misregistration in the intersection line between the long 
axis and short axis cine images in a web browser [17].

Another graphical user interface tool was developed 
in MATLAB (Mathworks, Inc., Natick, MA, USA) [18] 
to assist the manual labeling of the presence/absence of 
inter-breath-hold motion (Figure S2 of the Supplemental 
Material). The presence of inter-breath-hold motion was 
inferred from an irregular shape of the ventricular sep-
tum (e.g., the red arrow in Fig. 1b) or the lateral ventricu-
lar wall from an estimated long axis image. Estimated 
long axis images were classified as “outlier” when the 
images exhibit poor image quality for the interpretation 
of inter-breath-hold motion. The labeled results, along 

Table 1  Numbers of subjects for the two datasets in model 
development and testing

Dataset
CAT KAG

Model development (training + validation) 90 650
Testing 95 396
Total 185 1,046

https://www.kaggle.com/c/second-annual-data-science-bowl
https://www.kaggle.com/c/second-annual-data-science-bowl
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with the image file names, were saved as an Excel spread-
sheet file.

Deep learning
Data from a total of 1,231 subjects were considered for 
the training/validation/testing of deep CNN models. 
Image data from 740 subjects belonged to the model 
development group, and image data from 491 subjects 
belonged to the testing group. The data for model devel-
opment consisted of the training data of the CAT dataset 
and the training and validation data of the KAG dataset. 

The data for the testing consisted of the validation data of 
the CAT dataset and the testing data of the KAG dataset. 
With data from the model development group, a five-fold 
cross validation procedure was performed to train and 
validate five deep CNN models. The deep CNN models 
were implemented in Keras [19]. The left and right parts 
of each estimated long axis image were cropped, and the 
central part of the image contained 2-, 3-, or 4-chamber 
view of the heart.

We compared 12 different deep learning models, which 
were two customized deep CNN models (one with data 

Fig. 3  Visualization of the two orthogonal scan planes. Slice misalignment is not observed in (a) (yellow arrow), while it is observed in (b) (red arrow) in 
the intersecting line between the two planes

 

Fig. 2   A flowchart of the presented method. (a) Data labeling process. (b) Deep CNN model development and testing process. The method was de-
signed to automatically assess inter-breath-hold motion in cardiac short axis slices acquired during multiple breath-holds
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augmentation and the other without data augmentation) 
and ten transfer learning-based pre-trained CNN mod-
els (five with data augmentation and five without data 
augmentation). Each of the two customized deep CNN 
models consisted of a series of four convolution, batch 
normalization [20], ReLu activation, and max-pooling 
layers, followed by two fully connected (FC) layers. 
Between the FC layers, ReLu activation and dropout [21] 
with a rate of 0.5 layers were included. The transfer learn-
ing-based models had EfficientNet-B0 [22], MobileNet 
[23], NASNetMobile [24], ResNet50 [25], and VGG16 
[26] as baseline models for feature extraction [27]. These 
baseline models were pre-trained with ImageNet data 
[28], and their weight parameters were frozen for our 
model development. The extracted features went through 
global average pooling [29] followed by a fully connected 
layer. The output had two classes of motion and no-
motion. A binary cross-entropy function was used with 
the Adam optimizer [30]. Since the data were imbalanced 
between the motion and no-motion classes, we used the 
Scikit-learn’s class_weight.compute_class_weight func-
tion to compute the class weights and then applied the 
weights to the loss function [31].

Each input image was resampled to the dimensions of 
96 × 128 × 3 for the customized deep CNN model. For 
the transfer learning-based models, each input image 
was resampled to the dimensions of 224 × 224 × 3, which 
is the default setting for input image dimensions in the 
Keras deep learning library (https://keras.io/api/applica-
tions/). The three RGB channels were replicated with the 
same gray scale image. After a session of trial and error 
with different values of the learning rate of the Adam 
optimizer, the learning rate was set to 0.00001 for the 
customized deep CNN model and 0.0001 for the trans-
fer learning-based models. The batch size was set to 4 for 
the customized deep CNN model and 2 for the transfer 
learning-based models. The training and validation were 
performed for 50 epochs, and the model parameters were 
saved at every epoch. For each fold, we chose the epoch 
number which showed the maximum value of validation 
accuracy.

Evaluation
We implemented the methods on a Windows PC (AMD 
Ryzen 7 1800X Eight-Core Processor, 16 GB RAM, and 
NVIDIA GeForce GTX 1080 with 8 GB memory). For 
either the customized deep CNN or the transfer learn-
ing-based model, we evaluated the performance of clas-
sification accuracy using five-fold cross validation. Two 
different image augmentation schemes were considered: 
(1) no data augmentation performed in the training data 
(NoAug) and (2) horizontal flip performed to double the 
training data (Aug w/ flipLR). The numbers of images for 
each fold and each augmentation scheme are listed in 
Table 2. For each method, each of the five trained mod-
els predicted the inter-breath-hold motion probability 
score in each image. The final probability score was cal-
culated by averaging the probability scores across the five 
cross-validated deep CNN models. Using the scikit-learn 
library [31], we compared the area under the receiver 
operating characteristic curve (AUC), F1-score, preci-
sion, recall, and accuracy values among the 12 deep 
learning models.

Results
The presented tool provided automatic generation of 
estimated long axis images from a 3D stack of short axis 
slices. The publicly available cardiac cine MRI data orig-
inally consisted of 200 subjects in the CAT dataset and 
1,140 subjects in the KAG dataset. Among the 1,340 sub-
jects’ data, data from 109 subjects were not considered 
for this study due to poor data quality or run-time errors. 
Poor data quality included long axis slice images too dark 
to evaluate and images appearing out of the LV region 
of interest. Run-time errors included image dimension 
mismatch among the short axis slice images and errors 
occurring during slice reformation. For example, the 
dimension mismatch error occurred because some short 
axis slices had the dimensions of 256 × 192, while other 
short axis slices had the dimensions of 192 × 256. For the 
CAT dataset, the numbers of acquired long axis slices 
were different for each subject. Most of the subjects had 
three (45%) or four (29%) long axis slices. For the KAG 
dataset, all subjects’ data had two long axis slices (i.e., 
2-chamber and 4-chamber views). A total of 2,629 long 

Table 2  Number of images in each fold for training and validation data
Inter-breath-hold motion Fold 1

(n = 148)
Fold 2
(n = 148)

Fold 3
(n = 148)

Fold 4
(n = 148)

Fold 5
(n = 148)

No. of images No. of images No. of images No. of images No. of images
Training No Aug Yes 307 321 319 333 312

No 938 939 927 915 921
Aug w/ flipLR Yes 614 642 638 666 624

No 1,876 1,878 1,854 1,830 1,842
Validation Yes 91 77 79 65 86

No 222 221 233 245 239

https://keras.io/api/applications/
https://keras.io/api/applications/
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axis images were labeled as either motion or no-motion, 
and 745 (28.3%) of these long axis images were labeled as 
motion.

Five-fold cross validation results of the customized 
deep CNN model and transfer learning-based model are 
shown in Figures S3 and S4 of the Supplemental Mate-
rial, respectively. Training accuracy of the customized 
deep CNN models was close to 1.0 at epoch 40–50 and 
was higher than that of the transfer learning-based mod-
els in all folds. The overfitting issue may be due to the fact 
that the number of model parameters in the customized 
models is higher than that in the transfer learning-based 
models. From the validation accuracy plots in Figures 
S3 and S4, it is shown that the validation accuracy of 
the customized deep CNN models has a wider variation 
across the five folds than that of the transfer learning-
based models.

The prediction performance evaluation results of the 
12 different deep learning models are shown in Table 3. 
The data augmentation significantly improved the AUC, 
F1-score, precision, recall, and accuracy scores in the 
customized deep CNN model. For example, the accuracy 
score changed from 0.5252 to 0.7168 in the customized 
deep learning model, suggesting that other additional 
augmentation schemes including random image rota-
tion and translation may help improve prediction per-
formance. This is expected because the model showed 
severe overfitting in the training and validation learning 
curves (Figure S3). Meanwhile, the data augmentation 
did not help improve the scores in the transfer learning-
based models. The transfer learning-based model with 
EfficientNet-B0 as a feature extractor and no data aug-
mentation resulted in the highest scores in the AUC, 
F1-score, precision, and accuracy metrics. The transfer 
learning-based model with EfficientNet-B0 as a feature 
extractor and data augmentation resulted in the highest 
score in the recall metric. The pre-trained EfficientNet-B0 

model may have convolutional filters that are effective at 
extracting features that are relevant to the irregularity in 
the myocardial wall. Overall, the transfer learning-based 
model with NASNetMobile resulted in the lowest scores. 
Figure  4 shows the receiver operating characteristic 
(ROC) curves for the 12 deep learning models. It indi-
cates that EfficientNet-B0 and ResNet50 models are rela-
tively higher in AUC values than the other models.

Figure  5 shows representative examples of correct 
deep learning predictions in the estimated long axis 
images. The top row shows images labeled as no-motion, 
while the bottom row shows images labeled as motion. 
P(motion) indicates a probability score of the inter-
breath-hold motion. The transfer learning-based model 
with EfficientNet-B0 as a feature extractor without data 
augmentation was used for motion prediction. The irreg-
ularity of the ventricular septum or the ventricular wall in 
the lateral region is prominent (the yellow arrow) when 
compared with the ventricular wall of the estimated long 
axis images in the top row of the figure.

Figure  6 shows representative examples of incorrect 
deep learning predictions in the estimated long axis 
images. The ‘KAG1017’ image was incorrectly predicted 
as motion. This may be due to the thickened myocardial 
wall in the septum, which is a rare case in the data. The 
‘KAG1059’ image was incorrectly predicted. The dark 
image appearance may have affected the incorrect pre-
diction result. The ‘KAG1062’ image shows the incorrect 
prediction result. The bright regions close to the lateral 
myocardial wall may influence the incorrect prediction. 
The ‘KAG1016,’ ‘KAG903,’ ‘KAG923,’ and ‘CAT8601’ 
images all have partly tortuous myocardial bands in a few 
of the short-axis slices indicated by the yellow arrows in 
Fig.  6, suggesting inter-breath-hold motion. All of these 
images were incorrectly predicted as no-motion.

Table 3  Results of motion detection. The boldface indicates the highest score among the methods
Neural network model Data augmentation AUCa F1-score Precision Recall Accuracy
Customized deep CNN with four CBRb layers No Aug 0.6214 0.4950 0.3646 0.7709 0.5252

Aug w/ flipLR 0.7073 0.5183 0.5327 0.5046 0.7168
EfficientNet-B0 No Aug 0.8656 0.6940 0.6065 0.8111 0.7841

Aug w/ flipLR 0.8641 0.6803 0.5573 0.8731 0.7523
MobileNet No Aug 0.7771 0.6086 0.5366 0.7028 0.7271

Aug w/ flipLR 0.7709 0.5831 0.5080 0.6842 0.7047
NASNetMobile No Aug 0.5956 0.4550 0.3890 0.5480 0.6037

Aug w/ flipLR 0.5931 0.4636 0.3662 0.6316 0.5589
ResNet50 No Aug 0.8198 0.6533 0.5755 0.7554 0.7579

Aug w/ flipLR 0.8242 0.6545 0.5669 0.7740 0.7533
VGG16 No Aug 0.7946 0.6163 0.6018 0.6316 0.7626

Aug w/ flipLR 0.7884 0.5984 0.5994 0.5975 0.7579
aAUC: area under receiver operating characteristic (ROC) curve
bCBR: convolution, batch normalization, and ReLu layers
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Discussion
The current study demonstrates the feasibility of deep 
CNN models to automatically detect inter-breath-hold 
motion from estimated long axis slice images reformat-
ted from a 3D stack of short axis slices. Routine cardiac 
cine MRI typically acquires 2-chamber, 3-chamber, and 
4-chamber orientation long axis images along with the 
stack of short axis images with 10–15 slices that range 
from the apex to the basal level of the LV. This ultimately 

leads to up to 10–15 repetitions of breath-holds for short-
axis slice imaging, which may result in inter-breath-hold 
motion in certain slices of the short axis slice imaging. In 
our study, inter-breath-hold motion was noted in approx-
imately 28% of the subjects. Cardiac cine MRI data acqui-
sition protocols used to collect the datasets do not seem 
to have detected severe inter-breath-hold motion. The 
inter-breath-hold motion detection method may be help-
ful for early detection of motion while scanning a stack of 

Fig. 4  Comparison of the AUCs when evaluating the deep CNN models on the testing data
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short axis cine slices. The early detection of motion may 
be used to suggest MRI scanner operators or MRI tech-
nicians to redo a scan. Alternatively, one can consider 
retrospective motion correction, but in case of severe 
patient motion involving both in-plane and through-
plane motion, it would be very challenging to correct for 
the problematic slices. It may be more appropriate to dis-
card a certain portion of the data that has been affected 
by severe motion.

Bright signals from the subcutaneous fat made the LV 
and myocardium appear very dark in certain estimated 
long axis images. This may have adversely affected the 
accuracy of motion detection. Enhancement of image 
contrast in the LV and myocardium can be performed 

during image preprocessing. Development of an image 
preprocessing algorithm that automatically improves 
the blood/myocardium contrast remains as future work. 
Meanwhile, it is interesting to note that the prediction 
accuracy of the transfer learning-based models was not 
highly improved with data augmentation. This may be 
due to the fact that the model capacity is small in the 
transfer learning-based models, which have a relatively 
small number of features (1,000 ~ 2,000) after global aver-
age pooling [32]. Fine tuning with data augmentation 
may help improve prediction performance [33].

The current study did not pursue retrospective motion 
correction. In the literature, there are a few approaches 
for motion correction in a stack of short axis slice images. 

Fig. 6  Representative examples of incorrect predictions in the estimated long axis images. (Top row) Examples of no inter-breath-hold motion. (Bottom 
row) Examples of inter-breath-hold motion. P(motion) indicates a probability score of predicting the presence of inter-breath-hold motion when using 
the model of the EfficientNet-B0 as a feature extractor without data augmentation

 

Fig. 5  Representative examples of correct predictions in the estimated long axis images. (Top row) Examples of no inter-breath-hold motion. (Bottom 
row) Examples of inter-breath-hold motion. P(motion) indicates a probability score of predicting the presence of inter-breath-hold motion when using 
the model of the EfficientNet-B0 as a feature extractor without data augmentation
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Motion correction is based on image registration where a 
cost function that includes intensity displacements in the 
intersected lines between a long axis image and a short 
axis image is minimized iteratively [4, 7, 34]. A drawback 
of the registration-based iterative methods is their long 
computational time. Liew et al. reported that registration 
of all 20 cardiac phases took approximately 4.7  h [34]. 
Meanwhile, our method relied on deep CNN for motion 
detection. Our method, which involves the generation of 
estimated long axis image and the prediction of motion 
using deep CNN, took approximately one minute. It is 
relatively faster than the registration-based method, and 
thus it is well suited to prospective motion detection and 
subsequent re-scanning for motion-free short axis slice 
acquisition.

The current study has several limitations. First, we did 
not consider comparing a variety of deep CNN models 
with different values of learning rate. Second, it was dif-
ficult to label the “gray zone” images. For example, a cer-
tain proportion of estimated long axis images had several 
pixel shifts in the ventricular wall, and it was difficult to 
decide whether the image should be labeled as motion or 
no-motion. It may be more appropriate to define more 
than two classes, such as severe motion, slight motion, 
and no-motion. Third, manual labeling was performed 
by one expert. Although this study is a proof of concept, 
assessment of inter-rater or intra-rater agreement would 
be desirable. Fourth, this study considered the diastolic 
frame only. Since cardiac cine data have a temporal 
dimension, it would be interesting to compare the perfor-
mance with all frames or a subset of the frames (e.g., end-
systolic and end-diastolic frames).

Conclusion
The presented method enabled automatic assessment of 
inter-breath-hold motion from a long axis slice image 
reformatted from a 3D stack of short axis slices. We dem-
onstrated the feasibility of a deep CNN model, especially 
a transfer learning-based model, to detect inter-breath-
hold motion, and this approach may help MRI operators 
consider rescanning patients immediately when inter-
breath-hold motion is detected.
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