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Abstract
Background  To establish and validate radiomic models combining intratumoral (Intra) and peritumoral (Peri) 
features obtained from pretreatment MRI for the prediction of treatment response of lymph node metastasis from 
nasopharyngeal cancer (NPC).

Methods  One hundred forty-five NPC patients (102 in the training and 43 in the validation set) were retrospectively 
enrolled. Radiomic features were extracted from Intra and Peri regions on the metastatic cervical lymph node, and 
selected with the least absolute shrinkage and selection operator (LASSO). Multivariate logistic regression analysis 
was applied to build radiomic models. Sensitivity, specificity, accuracy, and the area under the curve (AUC) of receiver 
operating characteristics were employed to evaluate the predictive power of each model.

Results  The AUCs of the radiomic model of Intra, Peri, Intra + Peri, and Clinical-radiomic were 0.910, 0.887, 0.934, and 
0.941, respectively, in the training set and 0.737, 0.794, 0.774, and 0.783, respectively, in the validation set. There were 
no significant differences in prediction performance among the radiomic models in the training and validation sets 
(all P > 0.05). The calibration curve of the radiomic model of Peri demonstrated good agreement between prediction 
and observation in the training and validation sets.

Conclusions  The pretreatment MRI-based radiomics model may be useful in predicting the treatment response of 
metastatic lymph nodes of NPC. Besides, the generalization ability of the radiomic model of Peri was better than that 
of Intra and Intra + Peri.
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Background
Nasopharyngeal cancer (NPC) is the most frequent type 
of head and neck cancer in Southeast Asia and South 
China [1–3]. NPC has a higher incidence (86.4%) of cer-
vical lymph node metastasis [4]. Intensity-modulated 
radiotherapy (IMRT) is the primary treatment regimen 
for NPC. Additional chemotherapy is often administered 
in the treatment of patients with advanced stages because 
it has been shown to increase the overall survival rate 
[5–7]. Therefore, concurrent chemoradiotherapy (CCRT) 
has become the standard treatment for stage II-IVA NPC 
by the guidelines of the National Comprehensive Cancer 
Network (NCCN) [8]. Tumor response to radiochemo-
therapy is an independent prognostic factor for survival 
in NPC [9]. However, not all patients respond well to 
radiochemotherapy. Predicting the response to radioche-
motherapy may result in more targeted and personalized 
treatment for NPC patients, avoiding unnecessary side 
effects and costs. However, there are no established bio-
markers, and some have been proposed as research tools. 
Thus, there is an urgent need to identify an effective pre-
dictor for predicting treatment response in patients with 
NPC.

The ability of multimodality imaging biomarkers gener-
ated from computed tomography (CT), 18 F-fluorodeoxy-
glucose positron emission tomography, or MRI-DWI for 
the prediction of response to radiochemotherapy in NPC 
has been demonstrated [10–12]. MRI plays a vital role in 
NPC diagnosis and treatment management. MRI images, 
with a high soft tissue resolution, not only contain ana-
tomical information about the primary NPC lesion and 
its adjacent constructions but also reflect the intra-tumor 
characteristics [13]. Radiomics is a rapidly emerging field 
that refers to the mining of quantitative features from 
a large number of medical images. It is widely used in 
disease identification, differential diagnosis, prognosis 
prediction, and treatment response evaluation [13–17]. 
According to recent studies, pretreatment MRI-based 
radiomics could predict progression-free survival in 
NPC [18, 19]. While lacking independent validation, the 
pretreatment MRI radiomic signature may predict early 
treatment response to initiation chemotherapy in NPC 
[20]. Peng et al. [9] discovered that tumor response to 
radiochemotherapy was recognized as an independent 
prognostic factor of 4-year disease-free, overall, and 
locoregional relapse-free survival. In another study, Liu 
et al. [21] revealed that an unsatisfactory tumor response 
(stable disease or disease progression) after neoadjuvant 
chemotherapy serves as a predictor of poor prognosis for 
advanced-stage NPC patients. However, these radiomics 
studies focused on the primary tumor and the intratu-
moral (Intra) region alone, without considering the utility 
of the peritumoral (Peri) microenvironment. Few studies 
have demonstrated the feasibility of combining the Intra 

and Peri radiomic features in the evaluation of the treat-
ment response of metastatic lymph nodes in NPC.

Thus, our study aimed to evaluate the ability of pre-
treatment MRI-based radiomic models combining the 
Intra and Peri features for the prediction of treatment 
response of lymph node metastasis from NPC. We pres-
ent the following article in accordance with the Multi-
variable Prediction Model for Individual Prognosis or 
Diagnosis (TRIPOD) reporting checklist [22].

Materials and methods
Patients
The retrospective study received approval from our 
ethics committee and institutional review board, and 
informed consent was not required. Between October 
2016 and November 2019, we enrolled 185 patients with 
NPC who received induction chemotherapy (IC) and 
CCRT. All patients received an individualized treatment 
based on NCCN guidelines [23]. The details of treatment 
regimens are shown in Additional file 1 (Additional file 
1: S1). The inclusion criteria were as follows: (1) Primary 
tumor confirmed by biopsy as NPC; (2) available pre-
treatment T2-weighted imaging (T2WI) and contrast-
enhanced T1-weighted imaging (CE-T1WI) images 
after biopsy; (3) available post-treatment T2WI and CE-
T1WI images for predicting treatment response; (4) no 
treatment before baseline biopsy; and (5) available clini-
cal variables such as age, sex, T-stage, N-stage, clinical 
stage, lymph node involvement, and lymph node gross 
tumor volume (GTV-ln). The exclusion criteria were as 
follows: (1) the period between baseline MRI and initial 
treatment was further than 2 weeks (n = 14); (2) the exis-
tence of other malign tumors (n = 9); (3) missing clinico-
pathological information (n = 10); (4) poor image quality 
(n = 7). Finally, a total of 145 consecutive patients (mean 
age 47.2 ± 12.6, range 13–77, male = 117, female = 28, stage 
II = 2, stage III = 59, stage IV = 84) were enrolled and allo-
cated to the training set (102 patients, October 2016 to 
December 2018) and validation set (43 patients, Decem-
ber 2018 to November 2019). [22] (Fig.  1). The time all 
patients who underwent MRI examination after the 
completion of treatment was 2–14 weeks. Patients were 
staged based on the 8th version American Joint Commit-
tee on Cancer (AJCC) Tumor-Node-Metastasis (TNM) 
staging system [24]. Demographic information and stages 
were extracted from the Hospital Information System of 
our institution.

MR images acquisition protocol
All patients underwent nasopharyngeal and cervi-
cal region MRI examination using a 1.5-T MR scanner 
(Avanto, Siemens, Germany) or a 3.0-T MR imaging 
scanner (Skyra, Siemens, Germany) with head-neck com-
bined coils. Overall, 94/145 (64.8%) patients underwent 
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imaging in the 1.5-T MRI scanner, and 51/145 (35.2%) 
underwent imaging in the 3.0-T scanner. To keep away 
from magnetic exposure and motion artifacts, patients 
were instructed to eliminate all metal-containing items 
and lie supinely in the scanner before scanning. Before 
the MRI examination, all patients will be required to 
wear earplugs and headphones to decrease noise. The 
DICOM format images of axial fat-suppressed CE-T1WI 
(contrast agent = Gd-DTPA, Magnevist, Schering, Berlin, 
Germany; dose = 0.1 mmol/kg body weight) and T2WI 
for each case were retrieved from the picture archiving 
and communication system (Carestream, Ontario, Can-
ada). The details of MRI scanning parameters are shown 
in Additional file 1 (Additional file 1: S2). MRI images 
were reconstructed using the inverse fourier transform 
with the linear filling algorithm.

Evaluation of lymph nodes
Multiple radiologic criteria were used to determine 
whether metastatic cervical lymph nodes were involved 
[25–28]. These included: (1) regions of central necrosis/
cystic necrosis (T2WI with a focal high signal intensity 
or CE-T1WI with low signal intensity/ with or without 
an adjacent border of enhancement), (2) extracapsular 
distribution in any size lymph node, including ambigu-
ous nodal boundaries, irregular nodal capsular improve-
ment, and infiltration into neighboring muscle or fat, (3) 
the shortest diameter of the cervical or medial retropha-
ryngeal lymph node is 10 mm; the lateral retropharyngeal 
lymph node is 5 mm.

In each patient, only the largest metastatic lymph node 
within the scanning range is considered. The largest 
lymph nodes were then assessed on T2WI for maximum 
axial diameter and minimum axial diameter long axis. 
The minimum axial diameter matched the node’s largest 
diameter in the axial plane perpendicular to its maximum 

Fig. 1  Flowchart shows patient selection. NPC, nasopharyngeal cancer; CE-T1WI, contrast-enhanced T1-weighted imaging; T2WI, T2-weighted imaging
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axial diameter. The Response Evaluation Criteria in Solid 
Tumors 1.1 (RECIST) was then used to assess the largest 
lymph node’s response after treatment [29]. The respond-
ers were defined as a reduction of at least 30% in the larg-
est lymph node’s maximum axial diameter. In contrast, 
non-responders had inadequate shrinking to qualify for 
the responders.

Preprocessing of images
All pretreatment MRI images were transmitted to the 
Artificial Intelligence Kit software (A.K., version 3.2.0, 
GE Healthcare, China) for preprocessing. Firstly, all raw 
images were reconstructed using the trilinear interpo-
lation algorithm to a final voxel size of 1  mm ×1  mm × 
1  mm. The center was employed to align the interpola-
tion grid’s location, and its measurements were rounded 
to the closest integer. Secondly, the Gaussian filter and 
bias-field correction were applied after the reconstruc-
tion. Lastly, to eliminate the influence of the differ-
ent ranges of gray values, image was normalized using 
z-score normalization.

Image segmentation
Three-dimensional manual segmentation of the largest 
lymph nodes and region of interest (ROIs) were delin-
eated by two radiologists with 7 and 20 years of clinical 
diagnosing experience using ITK-SNAP software (version 
3.8.0, http://www.itksnap.org) to generate Intra ROIs. 
Both radiologists were blinded to the clinical informa-
tion. The ROIs based on the lymph nodes were drawn to 
cover the whole tumor on each consecutive slice of the 
T2WI and CE-T1WI images separately, necrosis and 
extranodal extension regions were avoided when delin-
eated ROIs. A distance of 2 mm from the tumor bound-
ary was defined as the Peri region. The Peri ROI was then 
obtained by subtracting the Intra ROI from the dilated 
ROI. Figure 2 showed a typical MRI image and its associ-
ated Intra and Peri ROIs. The reproducibility of radiomic 
features was evaluated using the intraclass correlation 
coefficient (ICC). The senior radiologist (PZ) re-delin-
eated 30 lymph nodes that were randomly selected from 
the T2WI and CE-T1WI images, respectively. Feature 
with an ICC > 0.75 was regarded as having good repro-
ducibility and remained.

Feature extraction and selection
Radiomic features from the Intra and Peri ROIs 
were extracted using an open-source Python soft-
ware (PyRadiomics, version 3.0, https://pyradiomics.
readthedocs.io) [30] that followed the image biomarker 
standardisation initiative (IBSI) standard [31]. These 
features belonged to three categories: shape, firstorder, 
and texture features. Image intensity was discretized 
using a fixed bin width of 25. Detailed descriptions of 

these features are provided in Table S1 and Table S2 in 
the Additional file 1. Radiomic features were standard-
ized using z-score normalization. Five procedures were 
performed to select radiomic features. We used the 
Mann-Whitney U test to make the initial selection from 
the training set. For the remaining significant features, 
the P-value threshold was set at 0.05. Then, to elimi-
nate redundant features, Spearman correlation assess-
ment and maximum relevance-minimum redundancy 
(mRMR) were performed successively. Features with 
Spearman correlation coefficient values greater than 0.9 
were eliminated. 15 features with high relevance and low 
redundancy were retained after mRMR. Finally, the least 
absolute shrinkage and selection operator (LASSO) algo-
rithm and multivariate logistic regression using Akaike 
information criterion as the stopping rule were applied to 
select the most predictive features [32, 33].

Radiomic model building
Radiomic models (Intra, Peri, and Intra + Peri) were built 
using the radiomics score (Rad-score). The Rad-score was 
computed utilizing a linear combination of the chosen 
features weighted by their corresponding coefficients. To 
examine possible multicollinearity between the features 
included in the radiomic model, Spearman’s correlations 
were employed.

Clinical-radiomic model construction
Univariate logistic regression analysis was utilized to 
recognize independent risk factors for differentiating 
responders from non-responders between radiomic 
models and clinical variables. Subsequently, a clinical-
radiomic model combining the radiomic model and sig-
nificant independent risk factors was built in the training 
set, using the multivariable logistic regression analysis.

Model validation
The predictive performance of the radiomic model and 
clinical-radiomic model were assessed in the training 
set and then validated in the validation set using the area 
under the receiver operating characteristic curve (ROC-
AUC). The threshold was established utilizing the maxi-
mum Youden index (sensitivity + specificity − 1) on the 
training set and this same threshold was used for the 
validation set. We also calculated the accuracy, sensitiv-
ity, and specificity. The 95% confidence intervals (CIs) 
were calculated using the exact binomial method. Cali-
bration curves were plotted to evaluate the calibration 
performance of radiomic models. The Hosmer-Leme-
show (H-L) test was used to assess the goodness-of-fit of 
radiomic models [34].

http://www.itksnap.org
https://pyradiomics.readthedocs.io
https://pyradiomics.readthedocs.io
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Fig. 2  Representative slice of the MRI images and the corresponding Intra and Peri regions of interest (ROIs). The Intra ROI (red regions) drawn by a junior 
radiologist with the Peri ROI (yellow regions) generated by equidistant 3-dimensional dilation of the Intra regions with 2 mm. (a, b) Axial pretreatment 
CE-T1WI images. (c, d) Axial pretreatment T2WI images
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Statistical analysis
SPSS (version 26.0, available at https://www.ibm.com), 
MedCalc (version 18.2.1, available at https://www.med-
calc.org), and R software (version 4.0.0, http://www.r-
project.org) were utilized for all statistical analyses. The 
Shapiro-Wilk test was used to examine if quantitative 
data had a normal distribution. The clinical variables 
of the responders and non-responders were compared 
using an independent samples t-test, the Mann-Whitney 
U test, Fisher’s exact analysis, or the chi-squared (χ2) test, 
as applicable. The DeLong test was used to compare the 
AUCs among the radiomic models [35]. P < 0.05 was con-
sidered statistically significant (two-tailed).

Results
Baseline characteristics of the patient
The clinical characteristics and sociodemographics of 145 
patients are listed in Table  1. The numbers of respond-
ers and non-responders in the training and validation 
sets were 56 and 46, and 24 and 19, respectively. Among 
the involved population, the numbers of metastatic ret-
ropharyngeal lymph nodes and cervical lymph nodes in 
the training and validation sets were 24 and 78, and 6 and 
37, respectively. There were no significant differences in 
age, sex, T- stage, N-stage, clinical stage, and lymph node 
involvement between responders and non-responders in 

the training and validation sets (all P > 0.05). There was 
a significant difference in the GTV-ln between respond-
ers and non-responders in the two sets (P < 0.001 and 
= 0.047).

Feature selection
5408 radiomic features were extracted (2704 in the Intra 
region and 2704 in the Peri region). After calculating the 
ICCs, the numbers of reproducible features (ICCs > 0.75) 
from the CE-T1WI and T2WI images in the Intra region 
and Peri region were 940 and 1076, and 971 and 975, 
respectively. The detailed feature selection process and 
LASSO results are shown in Additional file 1 (Additional 
file 1: Fig. S1 and Fig. S2). Finally, we selected 4, 4, and 5 
features for Intra, Peri, and Intra + Peri radiomic models 
construction (Additional file 1: Table S3 and Table S4). 
In Additional file 1 (Additional file 1: Table S5), we pre-
sented the mean and standard deviation of the features.

Radiomic model development
The radiomic model of Intra was constructed using the 
following formula: Rad-score = -0.8765–0.8685 × CE-
T1WI_firstorder_wavelet.HHH.Skewness + 1.2215 × 
CE-T1WI_GLDM_wavelet.HHL.LDLGLE + 2.8194 × 
T2WI_GLCM_LoG.sigma.1.5.mm.3D.ClusterShade 

Table 1  Clinical characteristics of patients in the training and validation sets
Characteristics Training set

(n = 102)
Validation set
(n = 43)

Responders
(n = 56)

Non-responders
(n = 46)

P Responders
(n = 24)

Non-responders
(n = 19)

P

Age (mean ± SD) 45.4 ± 12.6 48.0 ± 13.4 0.310 47.5 ± 11.1 50.0 ± 12.4 0.492

Sex, n (%) 0.825 0.708

  Female 10 (17.9) 9 (19.6) 6 (25.0) 3 (15.8)

  Male 46 (82.1) 37 (80.4) 18 (75.0) 16 (84.2)

T-stage, n (%) 0.559 1.000

  T1 6 (10.7) 2 (4.3) 1 (4.2) 0 (0.0)

  T2 16 (28.6) 16 (34.8) 5 (20.8) 4 (21.1)

  T3 19 (33.9) 13 (28.3) 13 (54.2) 11 (57.9)

  T4 15 (26.8) 15 (32.6) 5 (20.8) 4 (21.0)

N-stage, n (%) 0.207 1.000

  N1 4 (7.1) 0 (0.0) 1 (4.2) 1 (5.3)

  N2 30 (53.6) 28 (60.9) 13 (54.1) 11 (57.9)

  N3 22 (39.3) 18 (39.1) 10 (41.7) 7 (36.8)

Clinical stage, n (%) 0.600 0.606

  II 2 (3.6) 0 (0.0) 0 (0.0) 0 (0.0)

  III 20 (35.7) 16 (34.8) 12 (50.0) 11 (57.9)

  IV 34 (60.7) 30 (65.2) 12 (50.0) 8 (42.1)

LN involvement, n (%) 0.136 0.757

Retropharyngeal LN 10 (17.9) 14 (30.4) 3 (12.5) 3 (15.8)

Cervical LN 46 (82.1) 32 (69.6) 21 (87.5) 16 (84.2)

GTV-ln (Gy),
median (IQR)

52.80
(46.20–60.00)

45.60
(36.07–52.35)

< 0.001* 51.50
(42.07–54.22)

41.80
(33.00–52.30)

0.047*

LN lymph node, GTV-ln Lymph node gross tumor volume, IQR interquartile range. * indicates statistical significant difference

https://www.ibm.com
https://www.medcalc.org
https://www.medcalc.org
http://www.r-project.org
http://www.r-project.org
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– 2.1866 × T2WI_GLCM_wavelet.LLH.
MaximumProbability.

The radiomic model of Peri was constructed using 
the following formula: Rad-score = -0.0330–1.3038 
× CE-T1WI_firstorder_LoG.sigma.0.5.mm.3D.Mini-
mum + 1.8829 × CE-T1WI_GLRLM_wavelet.HHH.SRH-
GLE + 1.1131 × T2WI_GLDM_wavelet.LHL.SDHGLE 
– 1.3508 × T2WI_GLCM_wavelet.LLH.ClusterTendency.

The radiomic model of Intra + Peri was con-
structed using the following formula: Rad-score = 
-0.0335–1.0301 × Intra_CE-T1WI_firstorder_LoG.
sigma.0.5.mm.3D.90Percentile – 3.0175 × Intra_T2WI_
GLCM_wavelet.LLH.MaximumProbability – 1.8770 × 
Peri_CE-T1WI_firstorder_LoG.sigma.0.5.mm.3D.Mini-
mum + 1.3759 × Peri_CE-T1WI_GLRLM_wavelet.HHH. 
SRHGLE + 1.4714 × Peri_T2WI_GLRLM_wavelet.HLL.
LRLGLE.

The distribution of the Rad-score of responders and 
non-responders in the training and validation sets is 
shown in Additional file 1 (Additional file 1: Fig. S3). 
Additional file 1 (Additional file 1: Table S6) provided 
detailed spearman’s correlation values between the 
selected features in the radiomic models.

Clinical-radiomic model construction
Univariate logistic regression analysis found that GTV-ln 
was associated with responders (OR = 1.055, P = 0.003). 
Further multivariate logistic regression analysis found 
that only GTV-ln in the Intra + Peri dataset was associ-
ated with responders (P = 0.036) (Table 2). Therefore, the 
Clinical-radiomic model was developed by integrating 
the Intra + Peri_Rad-score and GTV-ln (Fig. 3a). The clin-
ical-radiomic model was constructed using the following 
formula: Clinical-radiomic model = -2.8790 + 0.0590 × 
GTV-ln + 1.0770 × Intra + Peri_Rad-score.

Performance and validation of predicting model
Four predicting models including a clinical-radiomic 
model and radiomic model of Intra, Peri, and Intra + Peri, 
were ultimately constructed. The AUCs of the radiomic 
model of Intra, Peri, Intra + Peri, and Clinical-radiomic 
were 0.910, 0.887, 0.934, and 0.941, respectively, in the 
training set and 0.737, 0.794, 0.774, and 0.783, respec-
tively, in the validation set (Table 3). The discriminating 
performance of the clinical-radiomic model was supe-
rior to that of the clinical factor (GTV-ln) in the training 
set (0.941 vs. 0.709, P < 0.001) but not in the validation 
set (0.783 vs. 0.678, P = 0.356). The ROC curves of the 
radiomic models are shown in Fig. 4. The AUC, Sen, Spe, 
and ACC of each radiomic model in both cohorts are 
listed in Table  3. Representative CE-T1WI and T2WI 

Table 2  Univariate and multivariate logistic regression analyses 
for predictive factors of responders in the training set
Variables Odds 

ratio
95% CI P

Univariate logistic analysis

  GTV-ln 1.055 1.018–1.093 0.003

  Intra_Rad-score 2.718 1.857–3.980

  Peri_Rad-score 2.718 1.837–4.022

  Intra + Peri_Rad-score 2.718 1.835–4.026

Multivariate logistic analysis

  Intra clinical-radiomic GTV-ln 1.041 0.992–1.091 0.102

Rad-score 2.577 1.784–3.723

  Peri clinical-radiomic GTV-ln 1.039 0.994–1.086 0.087

Rad-score 2.638 1.770–3.932

  Intra + Peri 
clinical-radiomic

GTV-ln 1.061 1.004–1.121 0.036

Rad-score 2.935 1.867–4.613
GTV-ln Lymph node gross tumor volume, Intra intratumoral, Peri peritumoral

Fig. 3  (a) The Clinical-radiomic model was developed by integrating the radiomic model of Intra + Peri and GTV-ln in the training set. The different values 
of each variable corresponds to a point at the top of the graph, while the sum of points of all variables corresponds to a total point. Drawing a line from 
the total points to the bottom line is the probability of responders. (b) Calibration curves of the Clinical-radiomic model for predicting treatment response 
in the training and in the validation sets, respectively. Intra, intratumoral; Peri, peritumoral; GTV-ln, Lymph node gross tumor volume
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images of NPC patients as responders and non-respond-
ers were shown in Fig. 5.

In training and validation sets, the calibration curve 
of the clinical-radiomic model exhibited excellent 
agreement between the predictive and observational 

probability of differentiating between responders and 
non-responders (Fig.  3b), and the Hosmer-Lemeshow 
assessment outcomes were non-significant (P = 0.618 and 
0.780). The Hosmer-Lemeshow test also yielded non-
significant results in training and validation sets of the 
radiomic model of Intra (P = 0.405 and 0.165), radiomic 
model of Peri (P = 0.300 and 0.512), and radiomic model 
of Intra + Peri (P = 0.610 and 0.158), which revealed no 
departure from the ideal fit (Additional file 1: Fig. S4).

Models comparison and TRIPOD
Comparisons of AUC between the Clinical-radiomic 
model and the other radiomic models in the training 
and validation sets are listed in Table 4. According to the 
DeLong test, no significant difference in the AUCs was 
found across the radiomic models in the training and val-
idation sets (all P > 0.05).

According to the guidelines of the TRIPOD statement, 
the type of this study belongs to Type 2b. A full list of 
TRIPOD was provided in Additional file 1 (Additional 
file 1: Table S7).

Discussion
Our results showed that the pretreatment MRI-based 
radiomics model may be useful in predicting the treat-
ment response of metastatic lymph nodes of NPC. 
Although the Peri radiomics model does not provide 
statistically significant incremental value over the Intra 
model, the generalization ability of the radiomic model of 
Peri was better than that of Intra and Intra + Peri.

NPC is highly susceptible to regional lymph node 
metastasis [36]. Additionally, earlier findings indicated 

Table 3  Diagnostic performance of radiomic models in the 
training and validation sets
Models Cohorts AUC Sen Spe ACC
Intra Training 0.910

(0.837, 
0.958)

0.839
(0.716, 
0.923)

0.891
(0.764, 
0.963)

0.863
(0.780, 
0.922)

Validation 0.737
(0.580, 
0.859)

0.625
(0.405, 
0.812)

0.895
(0.668, 
0.986)

0.744
(0.588, 
0.864)

Peri Training 0.887
(0.809, 
0.941)

0.714
(0.577, 
0.827)

0.934
(0.821, 
0.986)

0.814
(0.724, 
0.883)

Validation 0.794
(0.643, 
0.902)

0.375
(0.187, 
0.594)

0.895
(0.668, 
0.986)

0.605
(0.444, 
0.750)

Intra + Peri Training 0.934
(0.867, 
0.974)

0.946
(0.851, 
0.988)

0.782
(0.636, 
0.890)

0.873
(0.791, 
0.930)

Validation 0.774
(0.621, 
0.887)

0.750
(0.532, 
0.902)

0.737
(0.488, 
0.908)

0.744
(0.588, 
0.864)

Clinical-radiomic Training 0.941
(0.877, 
0.978)

0.929
(0.827, 
0.980)

0.848
(0.711, 
0.936)

0.892
(0.815, 
0.944)

Validation 0.783
(0.631, 
0.894)

0.667
(0.446, 
0.843)

0.842
(0.604, 
0.966)

0.744
(0.588, 
0.864)

The 95% confidence interval was shown in parentheses. AUC the area under 
the curve, Intra intratumoral, Peri peritumoral, Sen sensitivity, Spe specificity, 
ACC accuracy

Fig. 4  Receiver operating characteristic curves of radiomic models for predicting treatment response in the training set (a) and validation set (b), respec-
tively. The numbers in parentheses are the 95% confidence interval. Intra, intratumoral; Peri, peritumoral
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that the characteristics of metastatic lymph nodes were 
indicators of distant metastasis and had an effect on 
prognosis for overall, local recurrence, regional relapse, 
and disease-free survival [37–39]. For patients with NPC, 
due to different levels of sensitivity to the treatment, 
patients at the same stage may have different treatment 
responses. In our study, among the 145 included patients, 
80 were identified as responders, and 65 were non-
responders. The responders and non-responders were 

55.2% and 44.8%. The results of our study are compara-
ble to other series [18, 20, 40, 41]. Successful prevention 
of therapeutic side effects and disease control, however, 
requires careful consideration of radiotherapy dose and 
chemotherapy regimen. Using our predictive model, phy-
sicians can preliminarily predict the patients’ treatment 
response and take preventative measures. Based on our 
result, increasing the GTV-ln could be an effective alter-
native treatment for these potentially poor responders. 
Moreover, radiotherapy and chemotherapy are the most 
common treatments for locoregionally progressed NPC 
[8]. Early identification of non-responders using our 
prediction model could aid in making timely and appro-
priate adjustments to therapy regimens, resulting in con-
siderable clinical benefits for NPC patients, and avoiding 
unnecessary radiochemotherapy-related side effects.

MRI has been widely utilized to assess treatment 
response in NPC [42]. No ideal biomarkers, however, 
were found to predict the treatment response in NPC 
nowadays. Lu et al.[43] showed that intravoxel inco-
herent motion (IVIM) MRI analysis had the potential 
to predict chemoradiotherapy response of metastatic 
lymph nodes, but only 27 partial response patients were 
included in this study, making it more difficult to accu-
rately assess the feasibility of IVIM. In addition, there are 

Table 4  Comparisons of AUC between the Clinical-radiomic 
model and the other radiomic models in the training and 
validation sets
Pairwise comparison AUC Z P†

Training set
Clinical-radiomic 0.941 - -

Intra + Peri 0.934 0.762 0.446

Intra 0.910 1.107 0.268

Peri 0.887 1.570 0.116

Validation set
Clinical-radiomic 0.783 - -

Intra + Peri 0.774 0.586 0.558

Intra 0.737 0.639 0.522

Peri 0.794 0.167 0.867
†P values were calculated by the DeLong test. AUC the area under the curve, 
Intra intratumoral, Peri peritumoral

Fig. 5  Representative slice of T2WI and CE-T1WI of metastatic cervical lymph nodes (red arrows) before and after radiochemotherapy. (a) A sample in the 
responder group, Rad-socre of Clinical-radiomic model is 5.739, and the probability to be a responder is 0.996; (b) A sample in the non-responder group, 
Rad-socre of Clinical-radiomic model is -4.037, and the probability to be a responder is 0.017. The threshold of probability is 0.481. CE-T1WI, contrast-
enhanced T1-weighted imaging; T2WI, T2-weighted imaging
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many MRI-radiomic studying the treatment response in 
NPC [18, 44–46]. These studies, however, have mainly 
focused on the primary tumor of NPC. Different from 
these studies that focus on primary tumors, the present 
study considered the metastatic lymph node as the ROI. 
Previous studies have shown that tumor recurrence and 
distant metastasis are strongly related to the peritumoral 
microenvironment [47–50]. Microenvironment affects 
the metastatic potential and the therapeutic effect [51]. 
To the best of our knowledge, treatment response pre-
diction of NPC using peri-tumoral radiomics features 
from metastatic lymph nodes has not been investigated. 
Although the differences in the value of AUCs across the 
radiomic models were not significant in both sets (all 
P > 0.05; Table  4), we found that the calibration curve 
of the radiomic model of Peri exhibited excellent agree-
ment between the predictive and observational in both 
the training and validation sets (Additional file 1: Fig. S4), 
which indicated the generalization ability of the radiomic 
model of Peri was better than that of Intra and Intra + Peri 
through visual inspection. But further research is neces-
sary before these findings can be applied clinically.

Shi et al. have suggested that the involvement of ret-
ropharyngeal and cervical may be a potential prognos-
tic factor for NPC [52]. However, in our study, there was 
no significant difference in lymph node involvement 
between responders and non-responders in the training 
and validation sets. It may be the cause of the distribu-
tion of lymph node involvement in responders and non-
responders groups were not well balanced. Furthermore, 
numerous studies have confirmed the potential utility of 
MRI-based lymph nodes characteristics in NPC prog-
nosis assessment, such as nodal grouping, extranodal 
extension, nodal laterality, and lymph node necrosis [39, 
53–55]. The results of these studies provide a good idea 
for our further research.

Intensity-based features, also known as firstorder 
features, describe properties of the intensity distribu-
tion within a ROI while ignoring the spatial location of 
each voxel. Besides, Laplacian of Gaussian filter, which 
emphasize edges region of rapid change, was used in 
the study. In the radiomic model of Intra + Peri, the 
firstorder_3D.90Percentile from the Intra region and 
firstorder_3D.Minimum from the Peri region was nega-
tively connected with responders, exhibiting that the 
non-responders had a more clear boundary than the 
responders. The three selected texture features for the 
radiomic model of Intra + Peri were wavelet features, 
which can be used to comprehensively quantify tumor 
heterogeneity across different spatial scales at different 
directional orientations. The significant gray level co-
occurrence matrix feature included MaximumProbability 
from the Intra region. The non-responders had a higher 
Maximum Probability, indicating that non-responders 

have coarser texture and greater tumor heterogeneity in 
the Intra region. Besides, the remaining two texture fea-
tures (short-run elevated gray level emphasis, long-run 
reduced gray level emphasis) of gray level run length 
matrix from the Peri region were also selected to develop 
the radiomic model of Intra + Peri. Our findings indi-
cated that, compared to non-responders, the responders 
showed a larger joint distribution of shorter run lengths 
with greater gray-level values and long run lengths with 
lower gray-level values inside the Peri region, indicating 
that responders have coarser texture and greater tumor 
heterogeneity in the Peri region.

The current study had several limitations. Firstly, our 
study was a retrospective analysis, and several essen-
tial clinical variables, such as plasma Epstein-Barr virus 
DNA, were not included in our study as a result of miss-
ing or unavailable data. More clinical data need to be 
incorporated to further improve the model’s discrimi-
nation ability. Besides, the time all patients who under-
went MRI examination after the completion of treatment 
was inconsistent, which might have introduced biases 
and impacted our results. Secondly, the heterogeneity 
in acquisition parameters of two different magnetic field 
strength scanners may affect the image texture. Thus, 
additional studies may be required to quantitatively 
investigate these effects. In addition, other MRI method, 
especially DCE-MRI-based radiomic, has been employed 
in predicting treatment response for breast malignancy 
and their function in NPC needs to be further explored 
[56]. Thirdly, the single-center nature and small sample 
size of our study limit the generalizability of our mod-
els. Hence, a multi-center study with large sample size is 
needed.

In summary, the pretreatment MRI-based radiomics 
model may be useful in predicting the treatment response 
of metastatic lymph nodes of NPC. Besides, the general-
ization ability of the radiomic model of Peri was better 
than that of Intra and Intra + Peri.

Abbreviations
AUC	� Area under the curve
AJCC	� American joint committee on cancer
CI	� Confdence internal
CCRT	� Concurrent chemoradiotherapy
CT	� Computed tomography
CE-T1WI	� Contrast-enhanced T1-weighted imaging
GTV-ln	� Lymph node gross tumor volume
Intratumoral	� Intra
IC	� Induction chemotherapy
IMRT	� Intensity-modulated radiotherapy
ICC	� Intraclass correlation coefficient
IBSI	� Image biomarker standardisation initiative
LASSO	� Least absolute shrinkage and selection operator
mRMR	� Maximum relevance-minimum redundancy
NPC	� Nasopharyngeal cancer
NCCN	� National comprehensive cancer network
Peritumoral	� Peri
RECIST	� Response evaluation criteria in solid tumors
ROI	� Region of interest



Page 11 of 12Xu et al. BMC Medical Imaging           (2023) 23:66 

Rad-score	� Radiomics score
ROC	� Receiver operating characteristic curve
T2WI	� T2-weighted imaging
TNM	� Tumor-node-metastasis
TRIPOD	� Transparent reporting of a multivariable prediction model for 

individual prognosis or diagnosis.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12880-023-01026-1.

Supplementary Material 1

Acknowledgements
Not applicable.

Author contributions
All authors contributed to the study conception and design. Material 
preparation, data collection and analysis were performed by HX, AW, CZ, 
and JR. HX, AW, JL, and PZ performed data interpretation and statistical 
analysis. The first draft of the manuscript was written by HX and all authors 
commented on previous versions of the manuscript. All authors read and 
approved the final manuscript.

Funding
This study was supported by the Sichuan Science and Technology Program 
(grant numbers 2021YFG0125, 2022YFSY0006). The funding body had no role 
in the design of the study, collection, analysis, and interpretation of data, or in 
writing the manuscript.

Data Availability
The datasets used and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The research was approved and the requirement of informed consent 
from the patients was waived by Sichuan Cancer Hospital Ethic Committee 
because of the retrospective design of this study, and patients’ information 
was protected. The study was performed in accordance with the Declaration 
of Helsinki.

Consent for publication
Not applicable.

Competing interests
None of the authors declare conflict of interest.

Received: 27 January 2023 / Accepted: 23 May 2023

References
1.	 Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer 

statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.
2.	 Wei KR, Zheng RS, Zhang SW, Liang ZH, Li ZM, Chen WQ. Nasopharyngeal car-

cinoma incidence and mortality in China, 2013. Chin J Cancer. 2017;36(1):90.
3.	 Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y, Ma J. Nasopharyngeal carci-

noma. Lancet. 2019;394(10192):64–80.
4.	 Wang X, Hu C, Ying H, He X, Zhu G, Kong L, Ding J. Patterns of lymph node 

metastasis from nasopharyngeal carcinoma based on the 2013 updated con-
sensus guidelines for neck node levels. Radiother Oncol. 2015;115(1):41–5.

5.	 Chen Y, Sun Y, Liang SB, Zong JF, Li WF, Chen M, Chen L, Mao YP, Tang LL, 
Guo Y, et al. Progress report of a randomized trial comparing long-term 
survival and late toxicity of concurrent chemoradiotherapy with adjuvant 

chemotherapy versus radiotherapy alone in patients with stage III to 
IVB nasopharyngeal carcinoma from endemic regions of China. Cancer. 
2013;119(12):2230–38.

6.	 Blanchard P, Lee A, Marguet S, Leclercq J, Ng WT, Ma J, Chan AT, Huang PY, 
Benhamou E, Zhu G, et al. Chemotherapy and radiotherapy in nasopharyn-
geal carcinoma: an update of the MAC-NPC meta-analysis. Lancet Oncol. 
2015;16(6):645–55.

7.	 Chen QY, Wen YF, Guo L, Liu H, Huang PY, Mo HY, Li NW, Xiang YQ, Luo DH, 
Qiu F, et al. Concurrent chemoradiotherapy vs radiotherapy alone in stage 
II nasopharyngeal carcinoma: phase III randomized trial. J Natl Cancer Inst. 
2011;103(23):1761–70.

8.	 Colevas AD, Yom SS, Pfister DG, Spencer S, Adelstein D, Adkins D, Brizel DM, 
Burtness B, Busse PM, Caudell JJ, et al. NCCN Guidelines Insights: Head and 
Neck Cancers, Version 1.2018. J Natl Compr Canc Netw. 2018;16(5):479–90.

9.	 Peng H, Chen L, Zhang Y, Li WF, Mao YP, Liu X, Zhang F, Guo R, Liu LZ, Tian L, et 
al. The Tumour response to induction chemotherapy has prognostic value for 
long-term survival outcomes after intensity-modulated Radiation Therapy in 
Nasopharyngeal Carcinoma. Sci Rep. 2016;6:24835.

10.	 Zhang GY, Wang YJ, Liu JP, Zhou XH, Xu ZF, Chen XP, Xu T, Wei WH, Zhang Y, 
Huang Y. Pretreatment diffusion-weighted MRI can predict the response to 
Neoadjuvant Chemotherapy in patients with nasopharyngeal carcinoma. 
Biomed Res Int. 2015;2015:307943.

11.	 Yen RF, Chen TH, Ting LL, Tzen KY, Pan MH, Hong RL. Early restaging whole-
body (18)F-FDG PET during induction chemotherapy predicts clinical out-
come in patients with locoregionally advanced nasopharyngeal carcinoma. 
Eur J Nucl Med Mol Imaging. 2005;32(10):1152–59.

12.	 Yang Y, Wang M, Qiu K, Wang Y, Ma X. Computed tomography-based 
deep-learning prediction of induction chemotherapy treatment response 
in locally advanced nasopharyngeal carcinoma. Strahlenther Onkol. 
2022;198(2):183–93.

13.	 Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren 
J, Sanduleanu S, Larue R, Even AJG, Jochems A, et al. Radiomics: the bridge 
between medical imaging and personalized medicine. Nat Rev Clin Oncol. 
2017;14(12):749–62.

14.	 Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton 
P, Zegers CM, Gillies R, Boellard R, Dekker A, et al. Radiomics: extracting more 
information from medical images using advanced feature analysis. Eur J 
Cancer. 2012;48(4):441–46.

15.	 Rogers W, Thulasi Seetha S, Refaee TAG, Lieverse RIY, Granzier RWY, Ibrahim 
A, Keek SA, Sanduleanu S, Primakov SP, Beuque MPL, et al. Radiomics: from 
qualitative to quantitative imaging. Br J Radiol. 2020;93(1108):20190948.

16.	 Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, 
they are data. Radiology. 2016;278(2):563–77.

17.	 Verma V, Simone CB 2nd, Krishnan S, Lin SH, Yang J, Hahn SM. The rise of 
Radiomics and Implications for Oncologic Management. J Natl Cancer Inst. 
2017;109(7).

18.	 Zhao L, Gong J, Xi Y, Xu M, Li C, Kang X, Yin Y, Qin W, Yin H, Shi M. MRI-based 
radiomics nomogram may predict the response to induction chemotherapy 
and survival in locally advanced nasopharyngeal carcinoma. Eur Radiol. 
2020;30(1):537–46.

19.	 Mao J, Fang J, Duan X, Yang Z, Cao M, Zhang F, Lu L, Zhang X, Wu X, Ding Y, 
et al. Predictive value of pretreatment MRI texture analysis in patients with 
primary nasopharyngeal carcinoma. Eur Radiol. 2019;29(8):4105–13.

20.	 Wang G, He L, Yuan C, Huang Y, Liu Z, Liang C. Pretreatment MR imaging 
radiomics signatures for response prediction to induction chemotherapy in 
patients with nasopharyngeal carcinoma. Eur J Radiol. 2018;98:100–06.

21.	 Liu LT, Tang LQ, Chen QY, Zhang L, Guo SS, Guo L, Mo HY, Zhao C, Guo X, Cao 
KJ, et al. The Prognostic Value of plasma Epstein-Barr viral DNA and Tumor 
Response to Neoadjuvant Chemotherapy in Advanced-Stage Nasopharyn-
geal Carcinoma. Int J Radiat Oncol Biol Phys. 2015;93(4):862–69.

22.	 Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, 
Vickers AJ, Ransohoff DF, Collins GS. Transparent reporting of a multivariable 
prediction model for individual prognosis or diagnosis (TRIPOD): explanation 
and elaboration. Ann Intern Med. 2015;162(1):W1–73.

23.	 Pfister DG, Spencer S, Brizel DM, Burtness B, Busse PM, Caudell JJ, Cmelak 
AJ, Colevas AD, Dunphy F, Eisele DW, et al. Head and neck cancers, Version 
2.2014. Clinical practice guidelines in oncology. J Natl Compr Canc Netw. 
2014;2(10):1454–87.

24.	 Tang LL, Chen YP, Mao YP, Wang ZX, Guo R, Chen L, Tian L, Lin AH, Li L, Sun 
Y, et al. Validation of the 8th Edition of the UICC/AJCC staging system for 
nasopharyngeal carcinoma from endemic areas in the intensity-modulated 
Radiotherapy Era. J Natl Compr Canc Netw. 2017;15(7):913–19.

http://dx.doi.org/10.1186/s12880-023-01026-1
http://dx.doi.org/10.1186/s12880-023-01026-1


Page 12 of 12Xu et al. BMC Medical Imaging           (2023) 23:66 

25.	 Ng SH, Chang JT, Chan SC, Ko SF, Wang HM, Liao CT, Chang YC, Yen TC. Nodal 
metastases of nasopharyngeal carcinoma: patterns of disease on MRI and 
FDG PET. Eur J Nucl Med Mol Imaging. 2004;31(8):1073–80.

26.	 van den Brekel MW, Stel HV, Castelijns JA, Nauta JJ, van der Waal I, Valk J, 
Meyer CJ, Snow GB. Cervical lymph node metastasis: assessment of radio-
logic criteria. Radiology. 1990;177(2):379–84.

27.	 King AD, Ahuja AT, Leung SF, Lam WW, Teo P, Chan YL, Metreweli C. Neck 
node metastases from nasopharyngeal carcinoma: MR imaging of patterns of 
disease. Head Neck. 2000;22(3):275–81.

28.	 Lam WW, Chan YL, Leung SF, Metreweli C. Retropharyngeal lymphadenopa-
thy in nasopharyngeal carcinoma. Head Neck. 1997;19(3):176–81.

29.	 Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein 
L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, et al. New 
guidelines to evaluate the response to treatment in solid tumors. European 
Organization for Research and Treatment of Cancer, National Cancer Institute 
of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 
2000;92(3):205–16.

30.	 van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan 
V, Beets-Tan RGH, Fillion-Robin JC, Pieper S, Aerts H. Computational 
Radiomics System to Decode the Radiographic phenotype. Cancer Res. 
2017;77(21):e104–e07.

31.	 Zwanenburg A, Vallieres M, Abdalah MA, Aerts H, Andrearczyk V, Apte A, 
Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, et al. The image Biomarker 
Standardization Initiative: standardized quantitative Radiomics for High-
Throughput Image-based phenotyping. Radiology. 2020;295(2):328–38.

32.	 Sauerbrei W, Royston P, Binder H. Selection of important variables and deter-
mination of functional form for continuous predictors in multivariable model 
building. Stat Med. 2007;26(30):5512–28.

33.	 Pan W. Akaike’s information criterion in generalized estimating equations. 
Biometrics. 2001;57(1):120–25.

34.	 Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski 
N, Pencina MJ, Kattan MW. Assessing the performance of prediction 
models: a framework for traditional and novel measures. Epidemiology. 
2010;21(1):128–38.

35.	 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two 
or more correlated receiver operating characteristic curves: a nonparametric 
approach. Biometrics. 1988;44(3):837–45.

36.	 Ho FC, Tham IW, Earnest A, Lee KM, Lu JJ. Patterns of regional lymph node 
metastasis of nasopharyngeal carcinoma: a meta-analysis of clinical evidence. 
BMC Cancer. 2012;12:98.

37.	 Feng Y, Cao C, Hu Q, Chen X. Prognostic Value and staging classification of 
Lymph nodal necrosis in nasopharyngeal carcinoma after intensity-modu-
lated Radiotherapy. Cancer Res Treat. 2019;51(3):1222–30.

38.	 Xu Y, Chen X, Zhang M, Xiao Y, Zong J, Guo Q, Qiu S, Zheng W, Lin S, Pan J. 
Prognostic effect of parotid area lymph node metastases after preliminary 
diagnosis of nasopharyngeal carcinoma: a propensity score matching study. 
Cancer Med. 2017;6(10):2213–21.

39.	 Zhang LL, Li JX, Zhou GQ, Tang LL, Ma J, Lin AH, Qi ZY, Sun Y. Influence of cer-
vical node necrosis of different grades on the prognosis of nasopharyngeal 
carcinoma patients treated with intensity-modulated Radiotherapy. J Cancer. 
2017;8(6):959–66.

40.	 Xi Y, Ge X, Ji H, Wang L, Duan S, Chen H, Wang M, Hu H, Jiang F, Ding Z. 
Prediction of response to induction chemotherapy plus concurrent chemora-
diotherapy for nasopharyngeal carcinoma based on MRI Radiomics and Delta 
Radiomics: a Two-Center Retrospective Study. Front Oncol. 2022;12:824509.

41.	 Yongfeng P, Chuner J, Lei W, Fengqin Y, Zhimin Y, Zhenfu F, Haitao J, Yang-
ming J, Fangzheng W. The usefulness of pretreatment MR-Based Radiomics 
on early response of Neoadjuvant Chemotherapy in patients with locally 
advanced nasopharyngeal carcinoma. Oncol Res. 2021;28(6):605–13.

42.	 Liao XB, Mao YP, Liu LZ, Tang LL, Sun Y, Wang Y, Lin AH, Cui CY, Li L, Ma J. How 
does magnetic resonance imaging influence staging according to AJCC 

staging system for nasopharyngeal carcinoma compared with computed 
tomography? Int J Radiat Oncol Biol Phys. 2008;72(5):1368–77.

43.	 Lu L, Li Y, Li W. The role of Intravoxel Incoherent Motion MRI in Predicting 
Early Treatment response to Chemoradiation for metastatic lymph nodes in 
nasopharyngeal carcinoma. Adv Ther. 2016;33(7):1158–68.

44.	 Bao D, Liu Z, Geng Y, Li L, Xu H, Zhang Y, Hu L, Zhao X, Zhao Y, Luo D. Baseline 
MRI-based radiomics model assisted predicting disease progression in 
nasopharyngeal carcinoma patients with complete response after treatment. 
Cancer Imaging. 2022;22(1):10.

45.	 Duan W, Xiong B, Tian T, Zou X, He Z, Zhang L. Radiomics in Nasopharyngeal 
Carcinoma. Clin Med Insights Oncol. 2022;16:11795549221079186.

46.	 Zhang B, Ouyang F, Gu D, Dong Y, Zhang L, Mo X, Huang W, Zhang S. 
Advanced nasopharyngeal carcinoma: pre-treatment prediction of 
progression based on multi-parametric MRI radiomics. Oncotarget. 
2017;8(42):72457–65.

47.	 Evans M, Baddour HM Jr, Magliocca KR, Muller S, Nannapaneni S, Chen AY, 
Kim S, Chen Z, Shin DM, Wang AY, et al. Prognostic implications of peritu-
moral vasculature in head and neck cancer. Cancer Med. 2019;8(1):147–54.

48.	 Mendes SO, dos Santos M, Peterle GT, Maia Lde L, Stur E, Agostini LP, de Carv-
alho MB, Tajara EH, Louro ID, Trivilin LO, et al. HIF-1alpha expression profile in 
intratumoral and peritumoral inflammatory cells as a prognostic marker for 
squamous cell carcinoma of the oral cavity. PLoS ONE. 2014;9(1):e84923.

49.	 Braman N, Prasanna P, Whitney J, Singh S, Beig N, Etesami M, Bates DDB, Gal-
lagher K, Bloch BN, Vulchi M, et al. Association of Peritumoral Radiomics with 
Tumor Biology and pathologic response to Preoperative targeted therapy for 
HER2 (ERBB2)-Positive breast Cancer. JAMA Netw Open. 2019;2(4):e192561.

50.	 Wang X, Zhao X, Li Q, Xia W, Peng Z, Zhang R, Li Q, Jian J, Wang W, Tang Y, et 
al. Can peritumoral radiomics increase the efficiency of the prediction for 
lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT? Eur 
Radiol. 2019;29(11):6049–58.

51.	 Ljungkvist AS, Bussink J, Rijken PF, Kaanders JH, van der Kogel AJ, Denekamp 
J. Vascular architecture, hypoxia, and proliferation in first-generation xeno-
grafts of human head-and-neck squamous cell carcinomas. Int J Radiat Oncol 
Biol Phys. 2002;54(1):215–28.

52.	 Shi Q, Shen C, Kong L, Wang X, Ding J, Gao Y, Xu T, Hu C. Involvement of both 
cervical lymph nodes and retropharyngeal lymph nodes has prognostic 
value for N1 patients with nasopharyngeal carcinoma. Radiat Oncol. 2014;9:7.

53.	 Lan M, Huang Y, Chen CY, Han F, Wu SX, Tian L, Zheng L, Lu TX. Prognostic 
value of cervical nodal necrosis in nasopharyngeal carcinoma: analysis of 
1800 patients with positive cervical nodal metastasis at MR Imaging. Radiol-
ogy. 2015;276(2):536–44.

54.	 Ai QY, King AD, Poon DMC, Mo FKF, Hui EP, Tong M, Ahuja AT, Ma BBY, 
Chan ATC. Extranodal extension is a criterion for poor outcome in patients 
with metastatic nodes from cancer of the nasopharynx. Oral Oncol. 
2019;88:124–30.

55.	 Ma H, Liang S, Cui C, Zhang Y, Xie F, Zhou J, Dong A, Chen M, Xie C, Li H, et 
al. Prognostic significance of quantitative metastatic lymph node burden on 
magnetic resonance imaging in nasopharyngeal carcinoma: a retrospective 
study of 1224 patients from two centers. Radiother Oncol. 2020;151:40–6.

56.	 Mani S, Chen Y, Li X, Arlinghaus L, Chakravarthy AB, Abramson V, Bhave SR, 
Levy MA, Xu H, Yankeelov TE. Machine learning for predicting the response 
of breast cancer to neoadjuvant chemotherapy. J Am Med Inform Assoc. 
2013;20(4):688–95.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 


	﻿Intra- and peritumoral MRI radiomics assisted in predicting radiochemotherapy response in metastatic cervical lymph nodes of nasopharyngeal cancer
	﻿Abstract
	﻿Background
	﻿Materials and methods
	﻿Patients
	﻿MR images acquisition protocol
	﻿Evaluation of lymph nodes
	﻿Preprocessing of images
	﻿Image segmentation
	﻿Feature extraction and selection
	﻿Radiomic model building
	﻿Clinical-radiomic model construction
	﻿Model validation
	﻿Statistical analysis

	﻿Results
	﻿Baseline characteristics of the patient
	﻿Feature selection
	﻿Radiomic model development
	﻿Performance and validation of predicting model
	﻿Models comparison and TRIPOD

	﻿Discussion
	﻿References


