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Abstract
Objectives  Osteosarcoma (OS) is the most common primary malignant bone tumor in adolescents. Lung metastasis 
(LM) occurs in more than half of patients at different stages of the disease course, which is one of the important 
factors affecting the long-term survival of OS. To develop and validate machine learning radiomics model based on 
radiographic and clinical features that could predict LM in OS within 3 years.

Methods  486 patients (LM = 200, non-LM = 286) with histologically proven OS were retrospectively analyzed and 
divided into a training set (n = 389) and a validation set (n = 97). Radiographic features and risk factors (sex, age, tumor 
location, etc.) associated with LM of patients were evaluated. We built eight clinical-radiomics models (k-nearest 
neighbor [KNN], logistic regression [LR], support vector machine [SVM], random forest [RF], Decision Tree [DT], 
Gradient Boosting Decision Tree [GBDT], AdaBoost, and extreme gradient boosting [XGBoost]) and compared their 
performance. The area under the receiver operating characteristic curve (AUC) and accuracy (ACC) were used to 
evaluate different models.

Results  The radscore, ALP, and tumor size had significant differences between the LM and non-LM groups (tradscore = 
-5.829, χ2

ALP = 97.137, tsize = -3.437, P < 0.01). Multivariable LR analyses showed that ALP was an important indicator for 
predicting LM of OS (odds ratio [OR] = 7.272, P < 0.001). Among the eight models, the SVM-based clinical-radiomics 
model had the best performance in the validation set (AUC = 0.807, ACC = 0.784).

Conclusion  The clinical-radiomics model had good performance in predicting LM in OS, which would be helpful in 
clinical decision-making.
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Introduction
Osteosarcoma (OS) is the most common primary malig-
nant bone tumor in children and adolescents [1–3]. 
About 80% of OS occur in the long bones of the extremi-
ties, especially in the metaphysis of the distal femur and 
proximal tibia, and 20% in the axial and pelvic bones [2]. 
Although the annual incidence of OS is about (1–3) per 
million people, much lower than common malignant 
tumors, the disease often has no typical clinical symp-
toms at the onset, with high malignant degree, great 
harm and high mortality [2, 4].

Patients with OS are prone to metastasis and have a 
poor prognosis [5, 6]. Among all the metastases of OS, 
lung metastasis (LM) are the most common, account-
ing for more than 70% [7]. The 5-year overall survival 
and disease-free survival after pulmonary metastasis 
were 30% and 21%, respectively [8]. Therefore, identify-
ing prognostic factors and timely differentiating patients 
at high risk can help clinicians develop targeted therapies 
to improve patients’ outcomes [5]. Previous studies have 
reported that important indicators of LM in OS patients 
include age, tumor location, tumor size, chemotherapy, 
etc. [9–13]. However, no consensus has been reached and 
these prognostic factors should be further explored and a 
model for estimating LM in OS patients should be built.

The primary means of OS diagnosis is through evalu-
ating plain X-rays [14]. Early identification of OS by 
X-ray radiography can reflect tumor size, location, 
bone destruction, etc. In recent years, some scholars 
have applied machine learning methods based on X-ray 
images to the diagnosis and differentiation of OS [14–
16]. Alge et al. proposed an automated method for clas-
sification of benign tumors and OS using RNA-seq and 
X-ray images [15]. Hu et al. used image texture analysis 
to extract texture features from bone X-rays images to 
evaluate the recognition rate of OS, which can be used 
in computer-aided OS diagnosis systems [16]. Pereira et 
al. built machine learning-based computed tomography 
(CT) radiomic features to predict patients developing 
metastasis after OS diagnosis [17]. Their model based on 
Random Forest (RF) achieved an AUC of 0.79 and accu-
racy of 0.73 of the test set. However, their sample size 
was relatively small. Plain radiography is routine imaging 
method for OS in clinical practice, and its radiation dose 
is lower than CT. Therefore, we hypothesized that X-ray 
based machine learning models could be used to pre-
dict the LM of OS, which would facilitate individualized 
treatment for patients and increases survival rates.

The objective of this study was to develop and validate 
clinical-radiomics models based on X-ray features and 
clinical characteristics to predict the LM of OS patients.

Materials and methods
Patients and risk factors
We conducted this retrospective study with the approval 
of our hospital’s local ethics committee and waived the 
informed consent requirement. In total, we analyzed 
data from 550 patients admitted to our hospital from 
December 2010 to April 2019, all of whom underwent 
surgery and had pathologically confirmed OS. The inclu-
sion criteria were as follows: (1) X-ray examination was 
performed within 1 month prior to the initial operation 
and the tumor was found, (2) X-rays images were of good 
quality and have no obvious artifacts, and (3) pathologi-
cally confirmed OS. Exclusion criteria were as follows: (1) 
patients lacked preoperative X-rays images, (2) patients 
had poor image quality, (3) patients lacked of data sup-
porting LM, and (4) patients were lost to follow-up 
within 3 years. Finally, 486 patients were included and 
divided into an LM group (n = 200) and a non-LM group 
(n = 286).

All patients were followed for more than 3 years in this 
study. Patients were first followed up one month after 
surgery and monitored every three months for one year 
after surgery. Each follow-up evaluation included clinical 
evaluation and imaging evaluation (chest X-ray and/or 
CT). Patients who presented with clinical symptoms dur-
ing the unconventional follow-up were also evaluated by 
X-ray and/or CT. LM was confirmed by biopsy or chest 
CT images at follow-up. The LM date was determined to 
be the date when the first CT showed signs of a new lung 
lesion [18].

Risk factors that were potentially associated with LM 
of OS were analyzed: sex, age, tumor location, maxi-
mal tumor size, resection margins, alkaline phosphatase 
(ALP), and neoadjuvant chemotherapy (NCT). Marginal 
excision was defined as complete excision of the tumor 
and its outer membrane, and wide resection was defined 
as surgical excision beyond the tumor response zone by 
more than 2  cm. The margins of resection were deter-
mined by both surgical records and pathological reports 
[18]. Figure 1 shows the framework of our study.

Image acquisition and tumor segmentation
All X-ray digital imaging and communications in medi-
cine images were collected from the picture archiving 
and communication system of our hospital.

Segmentation of lesions was performed using ITK-
SNAP software version 3.6.0 (www.itksnap.org) [19]. All 
regions of interest (ROIs) were handcrafted along the 
edge of the tumor on X-ray images that by a musculoskel-
etal radiologist with 6 years of experience and validated 
by a senior musculoskeletal radiologist with 15 years of 
experience.

http://www.itksnap.org
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Radiomics feature extraction and preprocessing
2264 features were extracted using Research Portal ver-
sion 1.1 (Shanghai United Imaging Intelligence, Co., 
Ltd.). Features were divided into three categories, 
including shape feature, texture feature and gray statis-
tic feature. The above three categories of features were 
extracted from the original image, and texture feature 
and gray statistic feature were extracted from the image 
through a variety of filtering processes. Data preprocess-
ing included resampling the pixel space of X-ray image to 
0.2 mm × 0.2 mm, and normalizing the image gray value 

by max-minimum normalization. The training set and 
validation set were randomly divided by the ratio of 8:2.

Radiomics feature screening
To enhance robustness of the radiomic features, the mus-
culoskeletal radiologist draw the ROIs of the compared 
set (randomly selected 100 patients). We used the intra-
class correlation coefficient (ICC) to evaluate inter-reader 
reproducibility of the features from compared set and 
original delineation. The features that ICC > 0.75 were 
retained for later feature selection. Analysis of variance 
(ANOVA), select K best and least absolute shrinkage 

Fig. 1  The framework of this study
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and selection operator (LASSO) were used to reduce the 
redundancy or selection bias of the features. Radiomics 
score (Radscore) was calculated for each patient via a lin-
ear combination of selected features that were weighted 
by their respective coefficients. λ is the regularization 
parameter of LASSO regression and is selected when the 
cross-validation error is minimal [18]. The processing 
details of the LASSO for feature selection were listed in 
the Supplementary materials (A).

Model building and validation
Clinical risk factors were compared via univariate anal-
ysis, variables with a P value < 0.05 were included in the 
clinical model. The clinical-radiomics model was estab-
lished based on the clinical and radiomics characteristics 
after screening. We built 8 different clinical-radiomics 
models based on k-nearest neighbor (KNN), RF, support 
vector machine (SVM), logistic regression (LR), Decision 
Tree (DT), Gradient Boosting Decision Tree (GBDT), 
AdaBoost, and extreme gradient boosting (XGBoost) 
[18, 20]. Finally, we compared the performance of these 
models. Models were trained using the repeated 5-fold 
cross-validation method in the training set, and estima-
tion performance was evaluated in the validation set.

The performance of different models was assessed 
using the area under the receiver operating characteristic 
curve (AUC) and accuracy (ACC).

Statistical analyses
R software (R Core Team, Vienna, Austria) version 3.4.3 
was used for statistical analysis. The t-test was performed 
to compare continuous variables, while chi-squared or 
Fisher’s exact test was used for classify variables between 
groups. All statistical tests were two-sided, and Bonfer-
roni-corrected P-values were used to identify the charac-
teristic significance of multiple comparisons.

Results
Clinical characteristics of patients
In total, 486 OS patients (281 males, 205 females; mean 
age of 19.1 ± 12.8 years, range 3–78 years) were included. 
Patients in the non-LM group were followed up for more 
than 36 months, and all the patients remained continually 
LM-free. In the LM group, the median LM time was 9.5 
months (range: 1–36 months). Univariate factor analysis 
showed that statistically significant differences occurred 
in radscore, ALP, and tumor size between the two groups 
(tradscore = -5.829, χ2

ALP = 97.137, tsize = -3.437, P < 0.01) 
(Table 1). In the LM group, 123 patients (61.5%) had ele-
vated ALP values, significantly higher than 51 patients 
(17.8%) in the non-LM group (χ2 = 97.137, P < 0.001). In 
addition, the maximum diameter of tumors in the LM 
group was significantly larger than that in the non-LM 
group (t = -3.437, P = 0.001). No significant difference 
was found in terms of age, sex, tumor location, resection 
margins, and NCT between the LM and non-LM group 
(tage = -0.328, χ2

sex = 0.749, χ2
location = 5.418, χ2

margin = 0.470, 
χ2

NCT = 0.479, P > 0.05).
Multivariable LR analysis showed that ALP was an 

important independent factor in predicting LM of OS 
(odds ratio [OR] = 7.272, P < 0.001) (Table 2).

Table 1  Clinical characteristics of patients
LM non-LM χ2/ t value P 

value
Sex χ2 = 0.749 0.387

  Male 111 (55.5%) 170 (59.4%)

  Female 89 (44.5%) 116 (40.6%)

Age (years)

  Mean ± SD 19.4 ± 13.7 19.0 ± 12.2 t = -0.328 0.146

Location χ2 = 5.418 0.367

  Femur 123 (61.5%) 165 (57.7%) t = -3.437 0.001

  Tibia 35 (17.5%) 70 (24.5%)

  Fibula 7 (3.5%) 9 (3.1%)

  Humerus 22 (11.0%) 21 (7.4%)

  Pelvis 9(4.5%) 12 (4.2%)

  Others 4 (2.0%) 9 (3.1%)

Size (cm)

  Mean ± SD 10.6 ± 4.6 9.3 ± 4.0

Surgical resection χ2 = 0.470 0.493

  Wide resection 198 (99.0%) 281 (98.3%)

  Marginal 
resection

2 (1.0%) 5 (1.7%)

ALP χ2 = 97.137 <0.001

  Normal 77 (38.5%) 235 (82.2%)

  Elevation 123 (61.5%) 51 (17.8%)

NCT χ2 = 0.479 0.489

  Yes 163 (81.5%) 226 (79.0%)

  No 37 (18.5%) 60 (21.0%)
Note: SD = standard deviation, LM = Lung metastasis, ALP = alkaline 
phosphatase, NCT = neoadjuvant chemotherapy

Table 2  Multivariable logistic regression analyses
Variable Coefficient OR (95% CI) P
Intercept -2.167 0.114 0.039

Age 0.013 1.013 (0.994, 1.033) 0.173

Sex -0.034 0.967 (0.634, 1.474) 0.875

Radscore -0.004 0.996 (0.975, 1.018) 0.736

ALP 1.984 7.272 (4.716, 11.215) < 0.0001

Location -0.091 0.913 (0.780, 1.069) 0.258

Margin 0.516 1.676 (0.266, 10.555) 0.582

NCT 0.123 1.131 (0.606, 2.113) 0.699

Size 0.039 1.040 (0.989, 1.092) 0.125
Note: OR, odds ratio; CI, confidence interval
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Performance of radiomics models
16 radiomics features of each patient were selected for 
model building, which were shown in the Supplementary 
materials (B) (Fig. 2).

In the training set, KNN had the highest AUC of 0.864, 
followed by XGBoost (AUC = 0.862) and AdaBoost 
(AUC = 0.858), and there was statistical difference in 
AUC among them (Delong test, P < 0.05). As far as ACC 
was concerned, XGBoost had the highest value of 0.807, 
followed by Adaboost (0.789) and KNN (0.786).

In the validation set, SVM had the highest AUC of 
0.807, followed by RF (AUC = 0.795), KNN (AUC = 0.792), 
LR (AUC = 0.792), GBDT (AUC = 0.782), XGBoost 
(AUC = 0.747), DT (AUC = 0.744), and AdaBoost 
(AUC = 0.715). In terms of ACC, GBDT had the highest 
value (0.794), followed by SVM (0.784), Adaboost (0.753), 
and XGBoost (0.753). The ACC of SVM was slightly lower 
than that of GBDT, but the AUC of SVM was signifi-
cantly higher than that of GBDT (Delong test, P < 0.05). 
Although the AUC of SVM was slightly higher than that 
of AdaBoost without statistical difference (Delong test, 
P > 0.05), ACC value of SVM was also higher than that of 
AdaBoost. In addition, the AUC of SVM is significantly 
higher than RF, LR, KNN and XGBoost, with statistical 
difference (Delong test, P < 0.05). Therefore, considering 
AUC and ACC, SVM-based clinical-radiomics model 
performed better (AUC = 0.807, ACC = 0.784, sensitiv-
ity = 0.700, specificity = 0.842) (Fig. 3; Table 3).

Discussion
In this study, we found that statistically significant differ-
ences in radscore, ALP, and tumor size between the LM 
and non-LM groups. However, multivariable LR analysis 

showed that ALP was an important independent factor 
in predicting LM in OS patients. SVM-based clinical-
radiomics model reached an AUC of 0.807 and ACC of 
0.784 in the validation set, which was higher than other 
models.

Univariate factor analysis showed that statistically sig-
nificant differences occurred in radscore, ALP, and tumor 
size between the two groups. Furthermore, ALP was an 
important independent predictor of LM in OS patients. 
ALP is a frequently used clinical indicator for the diag-
nosis of OS, and the National Comprehensive Cancer 
Network guidelines show that ALP is associated with 
the diagnosis and prognosis of OS [21, 22]. Wang et al. 
[23] found that ALP was associated with 5-year LM-
free survival of OS patients. Luo et al.[13] found that 
ALP was not significant clinical indicator for prediction 
of synchronous LM. Contrary to their results, our study 
showed that ALP was an independent predictor of LM 
in OS patients. Radscore can reflect the heterogeneity of 
different tumors, which has been widely used [24, 25]. Yin 
et al. [25] found that radscore was important predictor 
for differentiating benign and malignant sacral tumors. 
In addition, we found that the maximum size of tumors 
in the LM group was larger than that in the non-LM 
group. However, our study showed that tumor size was 
not an independent factor in predicting LM, which was 
inconsistent with previous studies [13, 26]. Huang et al. 
[10] reported that OS patients with large tumors (> 5 cm) 
have a significantly increased risk of pulmonary metas-
tasis. In addition, we found no significant differences 
in age, sex, tumor location, resection margin, and NCT 
between the LM group and the non-LM group, which is 
inconsistent with some previous studies [5, 10, 27]. This 

Fig. 2  Features were selected to construct the radiomics model
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may be related to the fact that our study took 3 years as a 
node and the sample size was relatively small.

In this study, we compared eight frequently used 
machine learning methods in predicting the occur-
rence of LM in OS patients, and these algorithms also 
performed well in previous studies [13, 17, 20, 25]. Our 
results demonstrated that KNN performed best in the 
training group. KNN is a conceptually simple but pow-
erful algorithm that is easy to use, interpret and imple-
ment [28]. It has been widely used in previous studies 
[29–31]. Furthermore, we found that XGBoost had the 
highest ACC in the training group. XGBoost is a new 
large-scale machine learning algorithm that minimizes 
the loss of functions through iterative construction [32, 
33]. Although we found that XGBoost had a relatively 
low AUC of 0.747 in the validation group, it was higher 
than the results of previous study [34]. Therefore, we still 
believe it is a good machine learning method for predict-
ing LM in OS patients. In the validation set, we found 
that SVM-based clinical-radiomics model exhibited a 
better performance than other models. SVM has been 

widely used because it can solve small sample, nonlinear 
problems and has strong generalization ability [13, 20]. 
It has been used to predict the efficacy of neoadjuvant 
chemotherapy [4], synchronous LM [13], and overall sur-
vival [35] in OS patients. RF also performed well in the 
validation set, second only to SVM. RF is a very effec-
tive model-free classification method, which is robust to 
noise and outliers, and can deal with high dimensional 
space quickly, but there are overfitting problems [20]. As 
far as ACC is concerned, GBDT performed best in the 
validation set. The GBDT model has the advantages of 
flexibility, high predictive power, and effectiveness in pro-
cessing imbalanced data [36]. Our SVM-based clinical-
radiomics model can help doctors determine the risk of 
LM in OS patients and make personalized medical plans 
in time. For high-risk patients, doctors may recommend 
closer monitoring, increased chemotherapy, or more sen-
sitive chemotherapy regimens [23].

Our study has certain limitations. First, all the images 
were acquired over the course of several years from one 
center. We excluded some patients who did not receive 

Table 3  Performance of radiomics models in the validation set
AUC ACC Sensitivity Specificity F1score Precision

KNN 0.792 0.701 0.650 0.737 0.642 0.634

LR
SVM
RF

0.792
0.807
0.795

0.742
0.784
0.732

0.600
0.700
0.700

0.842
0.842
0.754

0.658
0.727
0.683

0.727
0.757
0.667

DT 0.744 0.649 0.600 0.684 0.585 0.571

GBDT 0.782 0.794 0.700 0.860 0.737 0.778

AdaBoost 0.715 0.753 0.750 0.754 0.714 0.682

XGBoost 0.747 0.753 0.650 0.825 0.684 0.722
Note: AUC = area under curve, ACC = accuracy, LR = logistic regression, RF = random forest, DT = Decision Tree

Fig. 3  The ROC curve of different models in the validation set. SVM-based clinical-radiomics model achieved the highest performance
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X-ray before surgery (e.g., some patients have already 
been examined in other hospitals), which may lead to 
selection bias. Although we conducted strict screening 
and preprocessing of the included data, a multicenter 
study with a larger sample size is beneficial for further 
study. Second, we only compare 8 commonly used clas-
sifiers, and the performance of other machine learning 
methods or deep learning algorithms needs to be further 
studied. Third, although plain radiography is the routine 
preferred examination and prevention for patients, the 
information provided is still limited. In the future, build-
ing a multi-modal combined model combined with CT 
and MRI may provide more information for patients’ 
prognosis.

In conclusion, the clinical-radiomics model had good 
performance in estimating LM of OS patients, especially 
based on SVM algorithm, which would be helpful in clin-
ical decision-making.

Abbreviations
OS	� Osteosarcoma
LM	� lung metastasis
RF	� Random Forest
ALP	� alkaline phosphatase
ROIs	� Regions of interest
ANOVA	� Analysis of variance
LASSO	� Least absolute shrinkage and selection operator
Radscore	� Radiomics score
KNN	� k-nearest neighbor
SVM	� support vector machine
LR	� logistic regression
DT	� Decision Tree
GBDT	� Gradient Boosting Decision Tree
XGBoost	� extreme gradient boosting
AUC	� Area under the curve
ACC	� Accuracy.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12880-023-00991-x.

Supplementary Material 1

Acknowledgements
Not applicable.

Authors’ contributions
PY designed the study, collected and analyzed the data, and prepared and 
edited the paper. JWZ prepared, edited and revised the paper. YL participated 
in the clinical research process and edited the paper. TL participated in the 
process of data acquisition and image export. CS participated in the data 
collection process. XML took part in the processing of data analysis and 
statistics. JJC took part in the processing of data analysis and statistics. LC 
participated in the process of clinical guidance and article preparation. NH 
designed the study, ensured the integrity of the whole study and revised the 
paper. Ping Yin and Junwen Zhong are co-first authors on this paper.

Funding
This study received funding by the National Natural Science Foundation of 
China (NO.82001764), Peking University People’s Hospital Scientific Research 
Development Funds (RDY2020-08, RS2021-10), and Beijing United Imaging 
Research Institute of Intelligent Imaging Foundation (CRIBJQY202105). The 

funding agencies above provided support in study design, data collection, 
analysis and interpretation, and manuscript writing.

Availability of data and materials
The datasets generated during and/or analysed during the current study are 
available from the corresponding author on reasonable request.

Declarations

Competing interests
Not applicable.

Ethics approval and consent to participate
This study was approved by the local ethics committee of Peking University 
People’s Hospital and the informed consent requirement was waived. All 
methods were carried out in accordance with relevant guidelines and 
regulations.

Consent for publication
Not applicable.

Received: 13 September 2022 / Accepted: 6 March 2023

References
1.	 Zhang Y, Yang J, Zhao N, et al. Progress in the chemotherapeutic treatment of 

osteosarcoma. Oncol Lett. 2018;16(5):6228–37.
2.	 Ritter J, Bielack SS, Osteosarcoma. Ann Oncol. 2010;21(Suppl 7):vii320–5.
3.	 Gianferante DM, Mirabello L, Savage SA. Germline and somatic genetics of 

osteosarcoma-connecting aetiology, biology and therapy[J]. Nat Rev Endo-
crinol. 2017;13(8):480–91.

4.	 Chen H, Zhang X, Wang X, Quan X, Deng Y, Lu M, et al. MRI-based radiomics 
signature for pretreatment prediction of pathological response to neo-
adjuvant chemotherapy in osteosarcoma: a multicenter study. Eur Radiol. 
2021;31(10):7913–24.

5.	 Xu G, Wu H, Zhang Y, Xu Y, Guo X, Baklaushev VP, et al. Risk and prognostic 
factors for different organ metastasis in primary osteosarcoma: a large 
Population-Based analysis. Orthop Surg. 2022;14(4):714–9.

6.	 Gorlick R, Janeway K, Lessnick S, Randall RL, Marina N. Children’s oncology 
Group’s 2013 blueprint for research: bone tumors. Pediatr Blood Cancer. 
2013;60:1009–15.

7.	 Estrada-Villaseor E, Escamilla-Uribe R, De la Garza-Montano P, Dominguez-
Rubio R, Martinez-Lopez V, Avila-Luna A, et al. Association of metastasis 
with clinicopathological data in mexican patients with osteosarcoma, 
giant cell tumor of bone and chondrosarcoma. Asian Pac J Cancer Prev. 
2015;16:7689–94.

8.	 Salah S, Toubasi S. Factors predicting survival following complete surgi-
cal remission of pulmonary metastasis in osteosarcoma. Mol Clin Oncol. 
2015;3:157–62.

9.	 Li W, Zhang S. Survival of patients with primary osteosarcoma and lung 
metastases. J BUON. 2018;23(5):1500–4.

10.	 Huang X, Zhao J, Bai J, Shen H, Zhang B, Deng L, et al. Risk and clinicopatho-
logical features of Osteosarcoma Metastasis to the lung: a Population-Based 
study. J Bone Oncol. 2019;16:100230.

11.	 Wang S, Zheng S, Hu K, Sun H, Zhang J, Rong G, et al. A predictive model to 
Estimate the Pretest Probability of Metastasis in patients with Osteosarcoma. 
Medicine. 2017;96(3):e5909.

12.	 Kim S, Shin K, Kim H, Cho Y, Noh J, Suh J, et al. Postoperative Nomogram to 
predict the probability of metastasis in enneking stage IIB extremity osteosar-
coma. BMC Cancer. 2014;14:666.

13.	 Luo Z, Li J, Liao Y, Liu R, Shen X, Chen W. Radiomics Analysis of Multipara-
metric MRI for Prediction of Synchronous Lung Metastases in Osteosarcoma. 
Front Oncol. 2022;12:802234.

14.	 Shen R, Li Z, Zhang L, Hua Y, Mao M, Li Z, et al. Osteosarcoma Patients clas-
sification using plain X-Rays and Metabolomic Data. Annu Int Conf IEEE Eng 
Med Biol Soc. 2018;2018:690–3.

http://dx.doi.org/10.1186/s12880-023-00991-x
http://dx.doi.org/10.1186/s12880-023-00991-x


Page 8 of 8Yin et al. BMC Medical Imaging           (2023) 23:40 

15.	 Alge O, Lu L, Li Z, Hua Y, Gryak J, Najarian K. Automated classification of 
Osteosarcoma and Benign tumors using RNA-seq and plain X-ray. Annu Int 
Conf IEEE Eng Med Biol Soc. 2020;2020:1165–8.

16.	 Hu S, Xu C, Guan W, Tang Y, Liu Y. Texture feature extraction based on wavelet 
transform and gray-level co-occurrence matrices applied to osteosarcoma 
diagnosis. Biomed Mater Eng. 2014;24(1):129–43.

17.	 Pereira HM, Leite Duarte ME, Ribeiro Damasceno I, de Oliveira Moura Santos 
LA, Nogueira-Barbosa MH. Machine learning-based CT radiomics features 
for the prediction of pulmonary metastasis in osteosarcoma. Br J Radiol. 
2021;94(1124):20201391.

18.	 Yin P, Mao N, Liu X, Sun C, Wang S, Chen L, et al. Can clinical radiomics nomo-
gram based on 3D multiparametric MRI features and clinical characteristics 
estimate early recurrence of pelvic chondrosarcoma? J Magn Reson Imaging. 
2020;51(2):435–45.

19.	 Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 
3D active contour segmentation of anatomical structures: significantly 
improved efficiency and reliability. NeuroImage. 2006;31(3):1116–28.

20.	 Yin P, Mao N, Zhao C, Wu J, Sun C, Chen L, et al. Comparison of radiomics 
machine-learning classifiers and feature selection for differentiation of sacral 
chordoma and sacral giant cell tumour based on 3D computed tomography 
features. Eur Radiol. 2019;29(4):1841–7.

21.	 National Comprehensive Cancer Network [homepage on the Internet]. NCCN 
clinical practice guidelines in oncology: bone cancer. ; 2021. Available from: 
https://www.nccn.org/. Accessed August16, 2021.

22.	 Huang Q, Chen C, Lou J, Huang Y, Ren T, Guo W. Development of a Nomo-
gram for Predicting the Efficacy of Preoperative Chemotherapy in Osteosar-
coma. Int J Gen Med. 2021;14:4819–27.

23.	 Wang B, Tu J, Yin J, Zou C, Wang J, Huang G, et al. Development and valida-
tion of a pretreatment prognostic index to predict death and lung metasta-
ses in extremity osteosarcoma. Oncotarget. 2015;6(35):38348–59.

24.	 Dong D, Tang L, Li ZY, Fang MJ, Gao JB, Shan XH, et al. Development and vali-
dation of an Individualized Nomogram to identify Occult peritoneal metasta-
sis in patients with Advanced Gastric Cancer. Ann Oncol. 2019;30(3):431–8.

25.	 Yin P, Mao N, Chen H, Sun C, Wang S, Liu X, et al. Machine and deep learning 
based Radiomics Models for Preoperative Prediction of Benign and Malignant 
Sacral Tumors. Front Oncol. 2020;10:564725.

26.	 Zhang C, Guo X, Xu Y, Han X, Cai J, Wang X, et al. Lung metastases at the 
initial diagnosis of high-grade osteosarcoma: prevalence, risk factors and 
prognostic factors. A large population-based cohort study. Sao Paulo Med J. 
2019;137(5):423–9.

27.	 Kager L, Zoubek A, Pötschger U, Kastner U, Flege S, Kempf-Bielack B, et al. 
Primary metastatic osteosarcoma: presentation and outcome of patients 
treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J 
Clin Oncol. 2003;21(10):2011–8.

28.	 Lisson CS, Lisson CG, Mezger MF, Wolf D, Schmidt SA, Thaiss WM, et al. Deep 
neural networks and machine learning Radiomics Modelling for Prediction of 
Relapse in Mantle Cell Lymphoma. Cancers (Basel). 2022;14(8):2008.

29.	 Granata V, Fusco R, Setola SV, De Muzio F, Dell’ Aversana F, Cutolo C, et al. CT-
Based Radiomics Analysis to predict histopathological outcomes following 
liver resection in Colorectal Liver Metastases. Cancers (Basel). 2022;14(7):1648.

30.	 Duan C, Liu F, Gao S, Zhao J, Niu L, Li N, et al. Comparison of Radiomic Models 
based on different machine learning methods for Predicting Intracerebral 
Hemorrhage Expansion. Clin Neuroradiol. 2022;32(1):215–23.

31.	 Bhardwaj D, Dasgupta A, DiCenzo D, Brade S, Fatima K, Quiaoit K, et al. Early 
changes in quantitative Ultrasound Imaging Parameters during Neoadjuvant 
Chemotherapy to predict recurrence in patients with locally advanced breast 
Cancer. Cancers (Basel). 2022;14(5):1247.

32.	 Jiang J, Pan H, Li M, Qian B, Lin X, Fan S. Predictive model for the 5-year 
survival status of osteosarcoma patients based on the SEER database and 
XGBoost algorithm. Sci Rep. 2021;11(1):5542.

33.	 Chen TQ, Guestrin C. XGBoost: A scalable tree boosting system. In Kdd’16: 
Proc. 22nd Acm Sigkdd International Conference on Knowledge Discovery 
and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785 (2016).

34.	 Li W, Liu W, Hussain Memon F, Wang B, Xu C, Dong S, et al. An external-
validated prediction model to Predict Lung Metastasis among Osteosarcoma: 
a Multicenter Analysis based on machine learning. Comput Intell Neurosci. 
2022;2022:2220527.

35.	 Wu G, Zhang M. A novel risk score model based on eight genes and a nomo-
gram for predicting overall survival of patients with osteosarcoma. BMC 
Cancer. 2020;20(1):456.

36.	 Amygdalos I, Müller-Franzes G, Bednarsch J, Czigany Z, Ulmer TF, Bruners P 
et al. Novel machine learning algorithm can identify patients at risk of poor 
overall survival following curative resection for colorectal liver metastases. J 
Hepatobiliary Pancreat Sci 2022 Oct 4. doi: https://doi.org/10.1002/jhbp.1249. 
Epub ahead of print. PMID: 36196525.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 

https://www.nccn.org/
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1002/jhbp.1249

	﻿Clinical-radiomics models based on plain X-rays for prediction of lung metastasis in patients with osteosarcoma
	﻿Abstract
	﻿Introduction
	﻿Materials and methods
	﻿Patients and risk factors
	﻿Image acquisition and tumor segmentation
	﻿Radiomics feature extraction and preprocessing
	﻿Radiomics feature screening
	﻿Model building and validation
	﻿Statistical analyses

	﻿Results
	﻿Clinical characteristics of patients
	﻿Performance of radiomics models

	﻿Discussion
	﻿References


