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Reinforcement learning using Deep Q 
networks and Q learning accurately localizes 
brain tumors on MRI with very small training 
sets
J. N. Stember1*    and H. Shalu2 

Abstract 

Background:  Supervised deep learning in radiology suffers from notorious inherent limitations: 1) It requires large, 
hand-annotated data sets; (2) It is non-generalizable; and (3) It lacks explainability and intuition. It has recently been 
proposed that reinforcement learning addresses all three of these limitations. Notable prior work applied deep rein-
forcement learning to localize brain tumors with radiologist eye tracking points, which limits the state-action space. 
Here, we generalize Deep Q Learning to a gridworld-based environment so that only the images and image masks are 
required.

Methods:  We trained a Deep Q network on 30 two-dimensional image slices from the BraTS brain tumor database. 
Each image contained one lesion. We then tested the trained Deep Q network on a separate set of 30 testing set 
images. For comparison, we also trained and tested a keypoint detection supervised deep learning network on the 
same set of training/testing images.

Results:  Whereas the supervised approach quickly overfit the training data and predictably performed poorly on the 
testing set (11% accuracy), the Deep Q learning approach showed progressive improved generalizability to the testing 
set over training time, reaching 70% accuracy.

Conclusion:  We have successfully applied reinforcement learning to localize brain tumors on 2D contrast-enhanced 
MRI brain images. This represents a generalization of recent work to a gridworld setting naturally suitable for analyzing 
medical images. We have shown that reinforcement learning does not over-fit small training sets, and can generalize 
to a separate testing set.
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Introduction
Recently, reinforcement learning (RL, used interchange-
ably with the term deep reinforcement learning) has 
shown tremendous promise for landmark localization. 

Researchers have recently applied RL successfully to 
landmark or lesion localization in various image types 
and modalities [1–4]. Examples of applications are locali-
zation of breast lesions [5], lung nodules [6], anatomic 
landmarks on cardiac MRI [7] and vessel centerline trac-
ing [8]. However, not much work has been done in the 
field of brain lesion localization with RL.

In recent work [9], Stember and Shalu applied RL to 
localize brain tumors on MRI. They sought to address 
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three key shortcomings in current supervised deep learn-
ing approaches:

1.	 Requirement of large amounts of expert-annotated 
data.

2.	 Lack of generalizability, making it “brittle” and sub-
ject to grossly incorrect predictions when even a 
small amount of variation is introduced. This can 
occur when applying a trained network to images 
from a new scanner, institution, and/or patient popu-
lation [10, 11].

3.	 Lack of insight or intuition into the algorithm, thus 
limiting confidence needed for clinical implementa-
tion and curtailing potential contributions from non-
AI experts with advanced domain knowledge (e.g., 
radiologists or pathologists) [12, 13].

Their initial proof-of-principle application of RL to 
medical images used 2D slices of image volumes from the 
publicly available 2014 BraTS primary brain tumor data-
base [14]. These T1-post-contrast images included one 
tumor per image. In addition, their images included an 
overlay of eye tracking gaze points obtained during a pre-
viously performed simulated image interpretation. The 
state-action space was limited to the gaze plots, consist-
ing of the gaze points for that image. The gaze plots were 
essentially one-dimensional, and the various possible 
agent states were defined by location along the gazeplot. 
Actions were defined by the agent moving anterograde 
versus retrograde along the gaze plot, or by staying still. 
As a localization task, the goal was for the agent to reach 
the lesion. Using the manually traced tumor mask images, 
a reward system was introduced that incentivized finding 
and staying within the lesion, and discouraged staying 
still while the agent was still outside the tumor [9].

The results from this study showed that RL has the 
potential to make meaningful brain lesion localization 
predictions based on very small data sets (in this case, 70 
training set images). Supervised deep learning woefully 
overfit the training set, with unsurprisingly low accuracy 
on the testing set (around 10%). In contrast, RL improved 
steadily with more training, ultimately predicting testing 
set image lesion location with over 80% accuracy [9].

However, the system studied was not generalized, as 
it included eye tracking points, which are usually not 
available with radiological images. Additionally, the eye 
tracking points confined the state-action space to one 
dimension. In order to apply RL more generally to medi-
cal images, we must be able to analyze raw images along 
with accompanying image masks without the need for 
eye tracking gaze plots.

In this study, we generalize the approach to show that 
RL can effectively localize lesions using a very small 

training set using the gridworld framework, which 
requires only raw images and the accompanying lesion 
masks. This represents an important early step in estab-
lishing that RL can effectively train and make predictions 
about medical images. This can ultimately be extended 
to 3D image volumes and more sophisticated imple-
mentations of RL. Gridworld is a classic, paradigmatic 
environment in RL [15]. Given their pixelated charac-
ter, medical images tiled with a gridworld framework 
provide a natural, readily suitable environment for our 
implementation.

Methods
Basic terms
Following the basic approach of recent work [9], we ana-
lyzed 2D image slices from the BraTS 2014 public brain 
tumor database [14]. Since these are publicly available 
images with no patient identifying information, this study 
did not require IRB approval. These slices were randomly 
selected from among T1-weighted contrast-enhanced 
image slices that included brain tumor. Images from 
around the level of the lateral ventricles were selected. 
We used the BraTS 2014 data set specifically because it 
had used in an earlier, less generalized study using eye 
tracking points [9]. We wished to minimize the variables/
confounders between these two studies.

As in the recent work, we implementated a combina-
tion of standard TD(0) Q-learning with Deep Q learning 
(DQN). The key difference was how we defined the envi-
ronment, states, and actions.

We divided the image space of the 240× 240 pixel 
images by grids spaced 60 pixels, so that our agent 
occupied the position of a 60× 60 pixel block, shown 
in Figs. 1 and 2. The initial state for training and testing 
images was chosen to be the top-left block (Fig. 1a). The 
action space consisted of: (1) staying at the same position, 
(2) moving down by one block, or (3) moving to the right 
by one block. In other words, introducing some notation, 
the action space A ∈ N

3
0 , consisting of three non-negative 

integers, is defined by:

To each of the possible actions, a ∈ A , given a policy π , 
there is a corresponding action value depending on the 
state, Qπ (s, a) , defined by:

(1)A =

1
2
3

=

stay still
move down
move right

.

(2)

Qπ (s, a) = Eπ {Rt |st = s, at = a}

= Eπ

{

∞
∑

k=0

γ krt+k+1|st = s, at = a

}
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where Rt is the total cumulative reward starting at time 
t and Eπ

{
∑∞

k=0 γ
krt+k+1|st = s, at = a

}

 is the expecta-
tion for Rt upon selecting action a in state s and subse-
quently picking actions according to π [15].

Training: sampling and replay memory buffer
In each of the Nepisodes = 90 episodes of training, we 
sampled randomly from the 30 training set images. 
For each such image we subdivided into grids, and ini-
tialized such that the first state s1 was in the upper left 
block (Fig.  1a). We selected each action at at time step 
t according to the off-policy epsilon-greedy algorithm, 

which seeks to balance exploration of various states with 
exploiting the known best policy, according to

for the parameter ǫ < 1 . We used an initial ǫ of 0.7 to 
allow for adequate exploration. As Q learning proceeds, 
and we wished to increasingly favor exploitation of a bet-
ter known and more optimal policy, we set ǫ to decrease 
by a rate of 1× 10−4 per episode. The decrease continued 

(3)
at =

{

maxa∈A {Qt(a)} with probability ǫ
random action inA with probability 1− ǫ.

Fig. 1  Environment and reward scheme for training. a Shows the initial state ( s1 ) for all episodes, with the agent in the upper left corner. b–d 
Display the rewards in different states for the three possible actions. When the agent is not in a position overlapping or next to the lesion (b), staying 
in place gets the biggest penalty (reward of − 2), with a lesser penalty if the agent moves (reward of − 0.5). c Shows the rewards for the possible 
actions in the state just to the left of the mass. Moving toward the lesion so that the agent will coincide with it receives the largest possible and only 
positive reward (+ 1). d Shows the state with the agent coinciding with the lesion. Here we want the agent to stay in place, and thus reward this 
action with a + 1 reward
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down to a minimum value ǫmin = 1× 10−4 , so that some 
amount of exploring could always take place.

Our reward scheme is illustrated for sample states in 
Figs. 1b–d. The reward rt is given by

Replay memory buffer
In general, for each time t we thus have state st , the action 
we have taken at , for which we have received a reward 
rt and which brings our agent to the new state st+1 . 
We store these values in a tuple, called a transition, as 
Tt = (st , at , rt , st+1) . For each successive time step, we can 
stack successive transitions as rows in a transition matrix 
T . We do so up to a maximum size of Nmemory = 15, 000 
rows. These represent the replay memory buffer, which 
allows the CNN that predicts Q values to sample and 
learn from past experience sampling from the environ-
ments of the various training images. Then, we use T to 
train the CNN and perform Q learning [15]. The value of 
Nmemory = 15, 000 was chosen to be as large as possible 
without overwhelming the available RAM.

Training: Deep Q network and Q learning
Using a CNN to approximate the function Qt(a) , we give 
the CNN the name of Deep Q network (DQN). The archi-
tecture of the DQN, shown in Fig. 3, is very similar to that 
of recent work [9]. It takes the state as input, using 3× 3 

(4)

rt =











−2, if agent is outside the lesion and staying still
+1, if agent overlaps the lesion and is staying still
−0.5, if agentmoves to a position outside the lesion
+1, if agentmoves to a position overlapping the lesion.

kernels with stride of 2 and padding such that the result-
ing intermediate output layer sizes are unchanged. We pro-
duced 32 intermediate output channels at each convolution 
block. The network consisted of four such convolutional 
layers in sequence, using exponential linear unit (elu) acti-
vation. The last output volume was flattened and followed 
by a 512-node layer with elu activation, followed by a few 
more fully connected layers and ultimately to a 3-node out-
put layer representing the 3 actions and corresponding Q 
values.

Our DQN loss is the difference between the Q values 
resulting from a forward pass of the DQN, which at time 
step t we shall denote as QDQN , and the “target” Q value, 
Qtarget , computed by the Bellman equation [15]. The lat-
ter updates by sampling from the environment and expe-
riencing rewards. Denoting the forward pass by FDQN , we 
can obtain state-action values by

But the function approximation we wish to learn is 
for the optimal state-action values, which maximize 
expected total cumulative reward. We do so by Q learn-
ing, in which the model learns from sampled experience, 
namely individual state-action pair-associated rewards. 
The method used in recent work [9], and that we employ 
here, is temporal difference in its simplest form: TD(0) . 
With TD(0) the state-action value function is updated 
in each step of sampling to compute the TD(0) target, 
denoted by Q(t)

target [15]:

(5)Q
(t)
DQN = FDQN(st).

Fig. 2  Two possible testing/deployment results. a shows a case of an accurate prediction, a true positive. After the 20 steps of forward inference on 
a presumed testing set image, the agent overlies the lesion. b shows a testing set miss, a false positive, where the agent does not overlap the lesion. 
In this particular case, there is no way for the lesion to get back to the lesion, since only the three actions of stay in place, move down and move to 
the right are defined in our formulation, although a more general formulation with 5 directions is possible in future work
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where γ is the discount factor and maxaQ(st+1, a) is 
another way of writing the state value function V (st+1) . 
The key part of the environment sampled is the reward 
value rt . Over time, with this sampling, Q(t)

target converges 
toward the optimal Q function, Q⋆ . In our implementa-
tion, for each episode, the agent was allowed to sample 
the image for 20 steps. We set γ = 0.99 , a frequently used 
value that, being close to 1 , emphasizes current and next 
states but also includes those further in the future.

Training: Backpropagation of the Deep Q network
In each step of DQN backpropagation, we randomly 
selected a batch size of Nbatch = 128 transitions from the 
rows of T and computed corresponding Q(t)

target and Q(t)
DQN 

values, yielding the vectors 
−→
Q target = {Q

(t)
target}

Nbatch
t=1  and 

−→
Q DQN = {Q

(t)
DQN}

Nbatch
t=1  . We backpropagated to minimize 

the loss Lbatch of said batch,

Fortunately, as we proceed in training Q(t)
DQN to succes-

sively approximate Q(t)
target , our CNN function approximation 

(6)Q
(t)
target = rt + γmaxaQ(st+1, a),

(7)Lbatch =
1

Nbatch

Nbatch
∑

i=1

∣

∣

∣Q
(i)
target − Q

(i)
DQN

∣

∣

∣.

should converge toward that reflecting the optimal policy, so 
that

To train the DQN, we employed the Adam optimizer 
with learning rate of 1× 10−4 . We implemented DQN 
training in the Pytorch package in Python 3.7 executed in 
Google Colab.

Results
We trained the DQN on 30 two-dimensional image 
slices from the BraTS database at the level of the lateral 
ventricles. We did not employ any data augmentation. 
Training was performed for 90 episodes. For each of 
the separate 30 testing set images, the trained DQN  was 
applied to the initial state with agent in the top left cor-
ner and successively to each subsequent state for a total 
of 20 steps. Even if the agent overlaps the lesion before 
the 20th step, we would expect that, with adequate prior 
training, the agent would stay on the lesion, given the 
training incentive to do so, as shown in Fig. 1d. Upon 
testing, the agent does not have prior knowledge about 
where the lesion is, so we felt that taking 20 steps 
was adequate to reach any lesion given our 4 × 4 (16 
patches) grid.

(8)lim
t→∞

(

Q
(t)
DQN

)

= lim
t→∞

(

Q
(t)
target

)

= Q⋆.

Fig. 3  Deep Q network architecture. Of note, the output consists of the three Q values corresponding to the three possible actions. A sample input 
image representing the initial state s1 is also noted
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Figure  2 shows the two possible testing/deploy-
ment outcomes. Figure  2a displays a true positive (TP) 
outcome, in which the agent overlies a patch that has 
nonzero overlap with the lesion. Figure  2b shows a 
false positive (FP) missed testing set case, in which the 
agent has zero overlap with the lesion after 20 steps of 
deployment.

Because this is a localization task, we take both true 
and false negative to be zero. Hence our accuracy is 
defined as TP

TP+FP.
In order to compare the performance of RL / Deep Q 

learning with that of standard supervised deep learn-
ing, we trained a localization supervised deep learn-
ing network as well. More specifically, we trained a 
keypoint detection CNN with architecture essentially 
identical to that of our DQN. Again, to make the com-
parison as fair as possible, we trained the keypoint 
detection CNN on the same 30 training images for 90 
epochs. TP is defined when the keypoint lies within the 
lesion, FP when it lies outside of the lesion. Not sur-
prisingly for such a small training set, the supervised 
keypoint detection CNN quickly overfit the training 
set, with training and testing set losses diverging before 
the 10 th epoch.

Figure shows a head-to-head comparison of the two 
techniques. It plots accuracy of the trained networks on 
the separate testing sets of 30 images as a function of 
training time, measured as episodes for deep reinforce-
ment learning and as epochs for supervised deep learn-
ing. Supervised deep learning does not learn in a way 
that generalizes to the testing set, as evidenced by the 
essentially zero slope of the best fit line during training. 
The DQN learns in a more generalized manner during 
training, as manifested by the positive slope of the best fit 
line. Ultimately, RL/Deep Q learning achieves an average 
accuracy of 70 % over the last 20 episodes, whereas super-
vised deep learning has a corresponding mean accuracy 
of 11 %, a difference that is statistically significant by 
standard t-test, with p-value of 5.9× 10−43.

We also note that if the training:testing split were more 
weighted toward training images, for example 55:5, we 
would expect the following: a testing set accuracy of 3/5 
or 4/5 could very well be due to chance. In this case, for 
better statistics, one would perform 12-fold cross valida-
tion and take the average testing set accuracy, computing 
a confidence interval.

In our case, the training:testing split was 30:30. As 
such, it stands to reason that 21/30 = 0.7 or 70% testing 
set accuracy is very unlikely due to chance. Nevertheless, 
we ran twofold cross validation, reversing training and 
testing set, and obtained a testing set accuracy again of 
70%.

Discussion
We have successfully applied deep reinforcement learn-
ing, here implemented as Deep Q learning, in tandem 
with temporal difference learning. Specifically, in this 
demonstration, we have applied the approach to identi-
fying and locating glioblastoma multiforme brain lesions 
on contrast-enhanced MRI. By locating, we mean more 
specifically locating at least one point within the lesion, 
noting that the lesion can have nonzero overlap with 
more than one patch in our gridworld image tiling.

We have shown that the approach can produce reason-
ably accurate results with a training set size of merely 30 
images. This number is at least an order of magnitude 
below what is generally considered necessary for radiol-
ogy AI. This follows from the fact that current radiology 
AI has been dominated by supervised deep learning, an 
approach that depends on large amounts of annotated 
data. Supervised deep learning typically requiring hun-
dreds (or, preferably, thousands) of annotated images to 
achieve high performance.

To restate the three key limitations of the currently 
prevalent supervised deep learning approach in radi-
ology, they are: (1) Requirement of large amounts of 
expert-annotated data; (2) Susceptibility to grossly incor-
rect predictions when applied to new data sets; and (3) 
Lack of insight or intuition into the algorithm.

This proof-of-principle work provides evidence that 
reinforcement learning can address limitation #1. It can 
also address limitation #3, as evidenced by the reward 
structure illustrated in Fig. 1b–d.

We note that deep reinforcement learning becomes 
very time-consuming to train for large training sets, mak-
ing this less practical for our proof-of-principle work. We 
note further that the purpose of this work was to show 
the data efficiency of deep reinforcement learning, which 
would not be furthered by training it on a large data-
base. Prior work has shown [16] that for 700 training set 
images, supervised deep learning can achieve high accu-
racy, of around 92%. Hence, the transition to accurate 
supervised deep learning regression on the BraTS data-
base can be presumed to lie somewhere between 30 and 
700 training set images.

Future work will address limitation #2 by comparing 
deep reinforcement learning and supervised deep learn-
ing trained on data from one institution and tested on 
separate images from another institution, ideally consti-
tuting a wide range of tumor characteristics.

An important limitation of the present work is that it 
has been performed on two-dimensional image slices. 
Future work will extend to fully three-dimensional image 
volumes. As can be seen in Fig.  4, the Deep Q learning 
training process is somewhat noisy. Future work will 
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utilize different techniques in reinforcement learning 
to learn in a smoother fashion. It should be noted that 
we tried employing policy-gradient learning to achieve 
this less noisy learning. We did so with the actor-critic 
approach in both its single-agent version, A2C, and its 
multi-agent form, A3C. Both approaches failed to learn 
as Deep Q learning could. We suspect that this is caused 
by the sequential nature of sampling in A2C/A3C, which 
could not make use of the varied sampling across envi-
ronments (i.e., different training set images) and states. 
We anticipate that incorporating a replay memory buffer 
with policy gradient may ultimately work best, and this 
will be a focus of future work.

Conlusions
We have shown as proof-of-principle that deep reinforce-
ment learning can accurately localize brain lesions on 
MRI using a gridworld framework. High testing set accu-
racy is achieved despite a very small training set. Hence, 
deep reinforcement learning can provide a data-efficient 
method to localize lesions when limited image data is 
available.
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