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Abstract 

Background:  The aim of this study was to investigate the ability of a pixel-to-pixel generative adversarial network 
(GAN) to remove motion artefacts in coronary CT angiography (CCTA) images.

Methods:  Ninety-seven patients who underwent single-cardiac-cycle multiphase CCTA were retrospectively 
included in the study, and raw CCTA images and SnapShot Freeze (SSF) CCTA images were acquired. The right 
coronary artery (RCA) was investigated because its motion artefacts are the most prominent among the artefacts of 
all coronary arteries. The acquired data were divided into a training dataset of 40 patients, a verification dataset of 30 
patients and a test dataset of 27 patients. A pixel-to-pixel GAN was trained to generate improved CCTA images from 
the raw CCTA imaging data using SSF CCTA images as targets. The GAN’s ability to remove motion artefacts was evalu-
ated by the structural similarity (SSIM), Dice similarity coefficient (DSC) and circularity index. Furthermore, the image 
quality was visually assessed by two radiologists.

Results:  The circularity was significantly higher for the GAN-generated images than for the raw images of the RCA 
(0.82 ± 0.07 vs. 0.74 ± 0.11, p < 0.001), and there was no significant difference between the GAN-generated images 
and SSF images (0.82 ± 0.07 vs. 0.82 ± 0.06, p = 0.96). Furthermore, the GAN-generated images achieved the SSIM of 
0.87 ± 0.06, significantly better than those of the raw images 0.83 ± 0.08 (p < 0.001). The results for the DSC showed 
that the overlap between the GAN-generated and SSF images was significantly higher than the overlap between the 
GAN-generated and raw images (0.84 ± 0.08 vs. 0.78 ± 0.11, p < 0.001). The motion artefact scores of the GAN-gener-
ated CCTA images of the pRCA and mRCA were significantly higher than those of the raw CCTA images (3 [4–3] vs 4 
[5–4], p = 0.022; 3 [3–2] vs 5[5–4], p < 0.001).

Conclusions:  A GAN can significantly reduce the motion artefacts in CCTA images of the middle segment of the RCA 
and has the potential to act as a new method to remove motion artefacts in coronary CCTA images.
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Introduction
Cardiovascular disease is now recognized as the leading 
cause of death and disability worldwide [1]. Coronary 
computed tomography angiography (CCTA) is widely 
used for diagnosing cardiovascular disease [2, 3]. Nonin-
vasive CCTA is now poised to become the cornerstone 
for the evaluation of coronary heart disease and the first 
diagnostic test in patients with chest pain [4]. However, 
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motion artefacts when the motion speed exceeds the 
time resolution of the CT equipment degrade image 
quality and interfere with coronary assessment. Among 
the branches of the coronary artery, the right coro-
nary artery (RCA) is the most prone to motion artefacts 
because the direction of motion is perpendicular to the 
CT scan plane. Although new types of CT equipment 
with improved hardware capabilities can reduce motion 
artefacts, high-quality imaging for small and moving 
vessels is still challenging (see Fig.  1). Motion artefacts 
potentially limit or even preclude the evaluation of parts 
of the coronary arteries or cause misinterpretations and 
are still the main factor affecting the accuracy of coro-
nary CTA diagnosis in clinical practice [5].

Thus, numerous technological solutions have been 
developed to reduce motion artefacts. Hardware-based 
solutions, such as dual source CT, have proven useful for 
improving the diagnostic accuracy at higher heart rates 
[6]. A motion correction algorithm is another software 
solution applied to image postprocessing. Previous image 
processing methods for CCTA motion compensation 
are based on motion estimation using image registration 
or the minimization of a motion artefact metric. Meth-
ods based on 3D-3D nonrigid image registration have 
demonstrated excellent motion compensation results 
[7–9]. However, it is possible that registration is errone-
ous in the presence of strong motion artefacts, which in 
turn leads to the degradation of motion compensation. 
In addition, an iterative motion compensation approach 
dealing with motion vector field (MVF) estimation 
that minimizes handcrafted motion artefact measures 
(MAMs) has been introduced to improve the image qual-
ity of coronary arteries [10]. SnapShot Freeze (SSF) is a 

useful motion correction algorithm that integrates the 
vessel path and velocity from multiple adjacent cardiac 
phases to restore the vessel lumen. However, it is a ven-
dor-specific method based on AW4.6 (Advantage Work-
stations, GE Healthcare) [11, 12].

In recent years, a deep learning method has been 
applied into the field of medical imaging. Deep learning, 
in particular, has made it feasible to produce new images 
using an algorithm known as a generative adversarial net-
work (GAN). A GAN consists of two networks, including 
a generator and a discriminator, cooperate and compete 
each other to optimize network parameters [13]. A GAN 
can generate new synthetic data with much larger diver-
sity which defers from traditional mathematical data 
augmentation methods. For the purpose of data augmen-
tation, various GAN models have been proposed to gen-
erate synthetic images [14–16]. Among them, pix2pix, 
an image conversion algorithm, learns the relationship 
between image pairs in order to generate a new image 
pair based on a single image [16]. Currently, pix2pix can 
be used for a variety of image-to-image translation pur-
poses; for example, it can convert sketched images to car-
toon images or CT images to MRI images [17, 18].

In this paper, a pix2pix network was employed, which 
generates a motion artefact-free image without depend-
ing on image registration or motion compensation. In 
addition, the image quality of the generated images was 
evaluated by using subjective and objective methods.

Materials and methods
Study participants
This study included retrospectively collected CCTA 
scans of 97 patients acquired between April 20th, 2020, 

Fig. 1  Cardiac motion leads to differently shaped artefacts in CT scans
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and November 30th, 2020. The exclusion criteria were 
as follows: (1) cardiac surgery, including bypass sur-
gery or percutaneous coronary intervention (PCI); and 
(2) severe calcification in the CCTA scan. The base-
line characteristics of the 97 patients are depicted in 
Table 1; 55 patients were male, and the median age was 
69 years old.

CTA acquisition
The acquisition of CCTA imaged was performed with 
a GE Revolution 256-row multidetector CT scanner 
(GE Healthcare, Waukesha, Wisconsin, US). A prospec-
tive electrocardiogram (ECG)-triggered CCTA tech-
nique with a 0.625-mm slice thickness was used in the 
study. Contrast media (iopromide 370 or iohexol 350) 
was injected into the antecubital vein (60 ml at 5 mL/s 
for body weights < 100 kg or 80 ml and 6 mL/s for body 
weights ≥ 100 kg), followed by a 50 ml bolus of saline at 
5 mL/s. The raw CCTA images and SSF CCTA images 
were obtained using AW4.6 (Advantage Workstations, 
GE Healthcare) after scanning.

Dataset
In this study, 40 patients were randomly chosen for the 
training set, 30 patients were randomly chosen for the 
verification set, and 27 patients were randomly cho-
sen for the test set. For each patient in the datasets, 
two-dimensional slices, including the proximal RCA 
(pRCA), mid-RCA (mRCA) and distal RCA (dRCA), 
were selected from the raw CCTA images and SSF 
images. Phases with extreme motion artefacts were 
excluded because segmentation of the coronary artery 
was impossible.

Image preprocessing
Normalization
The pixel intensities of the CT scans can be expressed in 
Hounsfield units (HU), which is a standard quantitative 
scale of radiodensity. All raw data were first converted into 
HU values. Then, the intensity values of each slice were 
normalized from [− 300,500] HU to [-1,1]:

where M denotes the rescaled value, HU denotes the 
original HU value, and MinHU and MaxHU denote the 
min and max bound values.

ROI selection
Before training the GAN network, it is necessary to extract 
artefact regions of interest (ROIs) using an effective pre-
processing method. Based on the unique characteristics 
of motion artefacts, we calculate the residuals of the raw 
image and the SSF image in the region of the right crown. 
Then, we adopt thresholding to obtain the binary image 
and locate the centroids of the artefacts with a binary 
morphology method. Finally, all images are cropped with 
square ROIs to a size of 64 × 64 pixels, and then these ROIs 
are resized to 256 × 256 pixels.

GAN framework
In this work, we adopted the pix2pix framework proposed 
by Phillip et  al. [16]. This architecture is an approach for 
training a generator model and is typically used for generat-
ing images. Similar to most GANs, our framework consists 
of deep convolutional neural network architectures that 
contain two subnetworks: a single generator network and 
a single discriminator network. The generator (G) attempts 
to learn a mapping from the input artefact images to the 
output artefact-corrected images, and the discriminator 
(D) learns to discriminate the generated artefact-corrected 
images and the SSF images (ground truth).

During the training of the GAN, both G and D are 
learned simultaneously. The discriminator model is trained 
to classify images as real (from the ground truth dataset) 
or fake (generated), and the generator is trained to fool the 
discriminator model. To do this, the following adversarial 
loss function can be utilized:

M =
HU −MinHU

MaxHU −MinHU
∗ 2− 1

(1)
LossGAN = argmin

G
max
D

LossBCE{G(x), y} + �LossL1{G(x), y}

(2)
LossBCE = Ex,y logD x, y + Ex[log(1− D(x,G(x))]

(3)LossL1 = Ex,y[�y− G(x)�1]

Table 1  Characteristics of the patients

Characteristic(n = 157) Value

Age 69(58,72)

Male gender 55(56.70%)

Height(cm) 168.38 ± 8.21

Weight(kg) 74.2 ± 9.12

BMI(kg/m2) 25.9 ± 5.86

Heart rate(bpm) 84.94 ± 17.15

Good eating habit (%) 62(63.92%)

Smoker (%) 54(55.67%)

Hypertension (%) 59(62.11%)

Hyperlipaemia (%) 57(58.76%)

Diabetes (%) 45(46.39%)

Family history of coronary heart disease (%) 9(9.28%)

Other past medical history (%) 21(21.65%)
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where x denotes the artefact images and y denotes the 
SSF images (ground truth). G tries to minimize the 
adversarial loss, and D tries to maximize it. λ is a hyper-
parameter that balances the contributions of the different 
loss components.

The specific structure of our method is shown in Fig. 2. 
The generator is a Res-UNet-based encoder-decoder 
structure, which combines the advantages of UNet [19] 
and a deep residual network [20]. UNet adds long skip 
layers between the downsampling and upsampling lay-
ers. This propagation of information from previous layers 
allows images to retain low-level information and creates 
sharper results. The convolution block with residual con-
nections can boost information exchange across differ-
ent layers and can alleviate the vanishing gradient issue. 
For the discriminator, a modified PatchGAN architecture 
with VGG16 as the base model is utilized. It tries to clas-
sify whether each 70 × 70 pixel patch in an image is real 
or fake. We run this discriminator convolutionally across 
the image, averaging all responses to provide the final 
output of D.

Experimental setup
All the training and experiments were conducted on 
a personal computer equipped with an Intel Core i7 
7980X CPU with 32 GB main memory and two NVIDIA 
GTX1080 GPUs. The proposed deep network was 

implemented using the Keras open-source deep learning 
library, and TensorFlow was chosen as the backend deep 
learning engine.

The training procedures lasted for 1000 epochs, and 
all relevant parameters in the generator and discrimina-
tor were simultaneously optimized using the Adam opti-
mizer with a learning rate of 0.0001. The batch size was 4, 
and λ was 10.

Evaluation of the model
Objective image evaluation
To quantitatively compare the quality of raw, SSF and 
GAN-generated images, three traditional metrics, struc-
tural similarity (SSIM), Dice similarity coefficient (DSC) 
and the circularity, were applied to the binary images 
representing the segmented vessel region in the three 
images. SSIM measures the similarity between two 
images from three aspects: luminance, contrast, and 
structure [21], which can be written as:

where c1 and c2 are small constants to stabilize the com-
putation and µx and σ 2

x  are the mean and the variance of 
the images respectively with x and y indicating the differ-
ent images to compare.

SSIM =

(

2µxµy + c1
)(

2σxy + c2
)

(

µ2
x + µ2

y + c1

)(

σ 2
x + σ 2

y + c2

)

Fig. 2  Illustration showing the framework of the GAN model
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DSC is a commonly used index to evaluate the similar-
ity between two sets of data [22]. The DSC between two 
binary images can be written as

where N denotes the total number of pixels in the image 
and pi and qi denote the pixel values of the different 
labelled segmentation samples. For each GAN-generated 
image and raw CCTA image, the vessel regions are seg-
mented and then compared with the ground truth (SSF 
images) segmentations using DSC.

On the other hand, a roundness measure was previ-
ously proposed to quantify motion artefacts because 
blood vessels passing through the plane appear circular 
at rest and deform with motion [23]. The circularity is 
defined as

where A and p are the area and perimeter of the seg-
mented binary vessel, respectively. The circularity of a 
perfect circle is equal to one. Since A and p are meas-
ured on a pixelized image, the circularity value may be 
over one in some cases due to discretization errors, espe-
cially when the binary vessel area is too small. Therefore, 
it is necessary to interpolate and enlarge the segmented 

DSC =
2
∑N

i piqi
∑N

f i p
N
i qi

Lcirc =
p2

4πA

binary vessel images before calculating the circularity. 
The ranges of the SSIM values, DSC values and circular-
ity values are 0 ~ 1, and a higher SSIM value, DSC value 
and circularity value indicate a higher quality.

Subjective image evaluation
Image quality was visually assessed by three observ-
ers: two radiologists with 8 and 13  years of experi-
ence, respectively. The observers were blinded to the 
patients’ data and the image reconstruction method 
and assessed the artefact image, freeze image and 
GAN-generated image in random order. The degree of 
motion artefacts (1, highly remarkable; 2, remarkable; 3, 
moderate; 4, minimal; and 5, none, as shown in Fig. 3) 
and overall image quality (1, nondiagnostic; 2, reduced; 
3, adequate; 4, good; and 5, excellent) was rated based 
on a 5-point Likert scale. The difference was resolved 
through consensus between these two observers. Inter-
observer agreement was calculated using intraclass cor-
relation coefficient (ICC). Because the artefacts were 
difficult to evaluate on separate images, the artefact 
image, freeze image and GAN-generated image for each 
patient were simultaneously shown to the radiologists 
for further evaluation using the overlay function of the 
FSLeyes viewer (https://​fsl.​fmrib.​ox.​ac.​uk/​fsl/​fslwi​ki/​
FSLey​es).

Fig. 3  A to E represent the coronary segments scored 5 to 1 in terms of the degree of motion artefacts

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes
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Statistics
The SSIM, DSC, and circularity index and subjective 
scores were expressed as the mean ± standard deviation 
(SD) or the median (interquartile range) according to 
the data normality determined by Kolmogorov–Smirnov 
test. We used a T test or a Wilcoxon signed ranks test 
to compare the continuous variables between the arte-
fact images and GAN-generated images. ANOVA test 
or Kruskal–Wallis H test was used to compare the con-
tinuous variables among the three groups. Statistics were 
computed using R (version 3.2.1; http://​www.r-​proje​ct.​
org/). The significance was set to P < 0.05 (2-sided).

Results
Objective image quality
Figure  4 shows the quantitative analysis results. Among 
them, the normalized circularity was significantly higher 
for the GAN-generated images than for the raw motion-
affected images of the RCA (0.82 ± 0.07 vs. 0.74 ± 0.11, 
p < 0.001), and there was no significant difference between 
the GAN-generated images and SSF images (0.82 ± 0.07 
vs. 0.82 ± 0.06, p = 0.96). Moreover, the results for the 
DSC showed that the overlap between the GAN-gener-
ated and SSF images was significantly higher than the 
overlap between the GAN-generated and raw motion-
affected images (0.84 ± 0.08 vs. 0.78 ± 0.11, p < 0.001). 
Furthermore, the GAN-generated images achieved the 
SSIM of 0.87 ± 0.06, significantly better than that of the 
raw motion-affected images 0.83 ± 0.08 (p < 0.001). Fig-
ure 5 shows some representative patient images. The first 
line shows the ROIs of the raw images with motion arte-
facts. The second line shows the ROIs of the GAN-gener-
ated images after motion artefact removal. The third line 
shows the ROIs of the SSF (ground truth) images.

Subjective image quality
In the test set of CCTA images, ICC was 0.89 (95% con-
fidence interval: 0.85–0.91), which indicated excellent 
interobserver agreement. Moreover, the motion arte-
facts reduction scores of the GAN-generated CCTA 
images of the pRCA and mRCA were significantly 
higher than that of the raw CCTA images (3 [4-3] vs 4 
[5-4], p = 0.022; 3 [3-2] vs 5[5–4], p < 0.001) (Table  2). 
No significant difference in motion artefacts reduc-
tion score was identified in dRCA between the raw and 
GAN-generated images. Furthermore, the overall image 
quality score of the GAN-generated CCTA images of 

Fig. 4  The structural similarity (A), Dice similarity coefficient (B) and circularity index (C) of the raw, SSF and GAN-generated CCTA images (SSIM: 
structural similarity, DSC: Dice similarity coefficient)

Fig. 5  The representative images of the pRCA, mRCA and dRCA in 
Raw, GAN-generated, and SSF CCTA images

http://www.r-project.org/
http://www.r-project.org/
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the pRCA, mRCA and dRCA were significantly higher 
than that of the raw CCTA images (Table 2). During the 
simultaneous evaluation of the raw and GAN-generated 
CCTA images, the radiologist agreed that although arte-
facts were still visible in some parts of the RCA in the 
GAN-generated CCTA images, the RCA looked grossly 
swollen in all the raw CCTA images when compared 
with the GAN-generated CCTA images.

Discussion
To our knowledge, our study is the first to use a pix-
2pix-based algorithm to improve CCTA image quality, 
which is a novel solution for CCTA motion correction. 
Here, the trained pix2pix GAN successfully corrected 
CCTA images with motion artefacts.

Because of the complexity of motion artefacts, it is dif-
ficult to directly quantify the image quality of coronary 

Table 2  Subjective image evaluation between of the raw and GAN-generated CCTA images in the test set of coronary CT 
angiography

Segment Raw GAN- generated p value

Motion artefact score, median (interquartile 
range)

3 (4–3) 4 (5–4) 0.022

pRCA​ 1, highly remarkable, n (%) 0 0

2, remarkable, n (%) 2/25(8%) 0

3, moderate, n (%) 13/25(52%) 7/25(28%)

4, minimal, n (%) 10/25(40%) 12/25(48%)

5, none, n (%) 0 6/25(24%)

median (interquartile range) 3 (3–2) 5(5–4) p < 0.001

mRCA​ 1, highly remarkable, n (%) 3/25(12%) 1/25(4%)

2, remarkable, n (%) 3/25(12%) 0

3, moderate, n (%) 14/25(56%) 1/25(4%)

4, minimal, n (%) 5/25(20%) 10/25(40%)

5, none, n (%) 0 13/25(52%)

median (interquartile range) 4 (4–3) 4 (4–4) 0.822

dRCA​ 1, highly remarkable, n (%) 1/25(4%) 0

2, remarkable, n (%) 2/25(8%) 1/25(4%)

3, moderate, n (%) 6/25(24%) 4/25(16%)

4, minimal, n (%) 14/25(56%) 17/25(68%)

5, none, n (%) 2/25(8%) 3/25(12%)

Overall image quality score, median (inter-
quartile range)

3 (4–3) 4 (5–4) P < 0.001

pRCA​ 1, nondiagnostic, n (%) 0 0

2, reduced, n (%) 1/25(4%) 0

3, adequate, n (%) 13/25(52%) 6/25(24%)

4, good, n (%) 11/25(44%) 12/25(48%)

5, excellent, n (%) 0 7/25(28%)

median (interquartile range) 3 (3–2) 4 (4–3) P < 0.001

mRCA​ 1, nondiagnostic, n (%) 2/25(8%) 0

2, reduced, n (%) 6/25(24%) 2/25(8%)

3, adequate, n (%) 14/25(56%) 10/25(40%)

4, good, n (%) 3/25(12%) 11/25(44%)

5, excellent, n (%) 0 2/25(8%)

median (interquartile range) 4 (5–3) 5 (5–4) P < 0.001

dRCA​ 1, nondiagnostic, n (%) 0 0

2, reduced, n (%) 3/25(12%) 1/25(%)

3, adequate, n (%) 4/25(16%) 4/25(16%)

4, good, n (%) 11/25(44%) 7/25(28%)

5, excellent, n (%) 7/25(28%) 13/25(52%)
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artery motion artefacts, so we referred to the previous 
methods and tried to quantify the severity of motion 
artefacts using subjective and indirect quantitative index 
evaluations.

The subjective evaluation was performed by two expe-
rienced radiologists at the RCA location. This evaluation 
index may be biased due to the subjective factors of the 
radiologists. Nevertheless, it is still the most convincing 
evaluation of coronary arteries. For the evaluation scores, 
the radiologists agreed that the GAN-generated image 
scores were significantly improved, artefact suppres-
sion could be observed in the pRCA and mRCA images. 
Moreover, all corrected images quantitatively demon-
strated improved quality, with SSIM, Dice and circularity 
being significantly higher in the RCA of the GAN-gener-
ated images than those of the raw CCTA images; that is, 
the GAN-generated images were more accurately repli-
cated the true CCTA images. Furthermore, there was no 
significant difference between the corrected images and 
the reference images, meaning that the GAN-generated 
images were sufficiently similar to the SSF images.

Although current techniques have been successful for 
motion correction, they are generally appropriate only 
for specific applications. For example, previous studies 
have proven that SSF is a promising method for elimi-
nating motion artefacts and improving image quality. 
However, this is a vendor-specific method, which means 
it may not be applied to other CT systems from differ-
ent vendors. Moreover, compared with the traditional 
iteration method, the deep learning method is simpler in 
operation and faster in processing time.

A deep learning approach for motion correction may 
be more generally applicable, as it is entirely a post-
processing method and does not require any motion 
measurements during scanning. Specifically, there are 
several advantages to our method. Firstly, a residual 
U-Net framework can learn features that are added to 
or subtracted from the input image instead of learn-
ing the entire output image, which not only makes 
deeper networks easier to train, but also allows learn-
ing more details and information. Secondly, for that 
the coronary artery occupies only a very small region 
of the whole CCTA image, it is difficult for the GAN 
model to find the location of the motion artefact. Thus, 
an automatically method was designed to locate the 
motion artefacts and cut the ROI. What’s more, the 
results of preliminary experiment showed that the tex-
ture and edge information of the heart region in the 
input images is necessary for the GAN model, and 
the ROI size of 64 × 64 pixels is the most suitable size. 
Thirdly, compared with a traditional L1 loss function, 
the discriminator is a “variational” loss function with 

adjustable parameters, and the results show better spa-
tial consistency, as well as did not generate additional 
motion artefacts. This property is essential for medical 
imaging because it will not mislead clinicians. Finally, 
actual learning was performed on 2D patches of the 
coronary artery, which means that a large amount of 
data can be obtained.

The present study still has some limitations. Firstly, 
data from only 1 scanner were used in this study. 
Hence, future studies should assess the generalizability 
of our results using more patients and several scanners. 
Secondly, only 40 cases were used for training the deep 
learning algorithm in this study. Considering the large 
number of slices per case, we thought that our datasets 
could substantially cover the possible signal distribu-
tions of the raw CCTA data. However, this assumption 
should be confirmed by checking the signal distribu-
tions of large datasets. In the future, the variants of the 
deep learning algorithm in our study should also be 
applied and validated on diseases with various appear-
ances. Thirdly, the CCTA images with heavily calcified 
segments which were featured with major movement 
artefacts were not included in this study. This type of 
images was typical for a clinical radiologist when deal-
ing with movement artefacts and should be included in 
the future study to enrich the diversity of the dataset. 
Finally, our method performs worse at the dRCA than 
at the pRCA and mRCA because coronary motion arte-
facts can be classified into different patterns of vessel 
deformation in different locations. Therefore, in the 
future, we should design different deep learning models 
for different artery parts.

In conclusion, we successfully improved the artefact 
CCTA image quality using a GAN model and created 
GAN-generated images that have contrast similar to that 
of SSF images with fewer motion artefacts in the RCA 
while preserving lesion contrast. The proposed GAN-
based algorithm may facilitate the introduction of syn-
thetic CCTA imaging into clinical practice.
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