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Abstract
Brain tumor classification using MRI images is a crucial yet challenging task in medical imaging. Accurate diagnosis 
is vital for effective treatment planning but is often hindered by the complex nature of tumor morphology 
and variations in imaging. Traditional methodologies primarily rely on manual interpretation of MRI images, 
supplemented by conventional machine learning techniques. These approaches often lack the robustness and 
scalability needed for precise and automated tumor classification. The major limitations include a high degree of 
manual intervention, potential for human error, limited ability to handle large datasets, and lack of generalizability 
to diverse tumor types and imaging conditions.To address these challenges, we propose a federated learning-
based deep learning model that leverages the power of Convolutional Neural Networks (CNN) for automated and 
accurate brain tumor classification. This innovative approach not only emphasizes the use of a modified VGG16 
architecture optimized for brain MRI images but also highlights the significance of federated learning and transfer 
learning in the medical imaging domain. Federated learning enables decentralized model training across multiple 
clients without compromising data privacy, addressing the critical need for confidentiality in medical data handling. 
This model architecture benefits from the transfer learning technique by utilizing a pre-trained CNN, which 
significantly enhances its ability to classify brain tumors accurately by leveraging knowledge gained from vast 
and diverse datasets.Our model is trained on a diverse dataset combining figshare, SARTAJ, and Br35H datasets, 
employing a federated learning approach for decentralized, privacy-preserving model training. The adoption of 
transfer learning further bolsters the model’s performance, making it adept at handling the intricate variations 
in MRI images associated with different types of brain tumors. The model demonstrates high precision (0.99 
for glioma, 0.95 for meningioma, 1.00 for no tumor, and 0.98 for pituitary), recall, and F1-scores in classification, 
outperforming existing methods. The overall accuracy stands at 98%, showcasing the model’s efficacy in classifying 
various tumor types accurately, thus highlighting the transformative potential of federated learning and transfer 
learning in enhancing brain tumor classification using MRI images.
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Introduction
Brain tumors pose intricate challenges due to their loca-
tion in the delicate structure of the human brain. These 
abnormal masses of cells, which can be either benign or 
malignant, present a wide spectrum of complexities that 
extend beyond their classification. Understanding these 
complexities is crucial in comprehending the gravity of 
the condition and the intricacies of treatment.

Benign tumors, though noncancerous, can still cause 
significant issues depending on their location and size. 
They may exert pressure on the brain, leading to symp-
toms such as headaches, seizures, or neurological defi-
cits. However, these tumors typically have well-defined 
borders and tend to grow slower than malignant tumors. 
Surgical removal might offer a curative option for these 
tumors, although their location within critical brain 
regions might limit the feasibility of complete resection 
without causing damage to essential brain structures.

In contrast, malignant brain tumors, also known as 
brain cancer, exhibit more aggressive behavior. They 
grow rapidly and infiltrate surrounding healthy brain 
tissue, making complete surgical removal challeng-
ing. The most common malignant primary brain tumor 
in adults is glioblastoma multiforme, notorious for its 
aggressive nature and resistance to treatment. Its diffuse 
nature within the brain makes it challenging to eradicate 
entirely, leading to a high recurrence rate despite aggres-
sive treatment approaches involving surgery, radiation, 
and chemotherapy.

The diversity of brain tumors further complicates 
treatment strategies. There are distinct types of tumors, 
such as gliomas, meningiomas, pituitary adenomas, and 
medulloblastomas, each with their unique characteris-
tics and challenges. For instance, some tumors originate 
from the brain tissue itself, while others may develop 
from surrounding structures or metastasize from cancers 
elsewhere in the body. This diversity demands tailored 
approaches for accurate diagnosis, prognosis, and treat-
ment planning.

The skull serves as an unyielding shield, guarding the 
brain against external forces. However, this rigid struc-
ture becomes a hindrance when faced with internal 
growth, whether benign or malignant. Brain tumors, 
regardless of their nature, can pose severe challenges due 
to the limited space within the skull. Their presence often 
leads to heightened intracranial pressure, a condition 
that can culminate in brain damage or life-threatening 
situations.

The World Health Organization (WHO) adopts a sys-
tematic classification system for brain tumors, aiming to 
categorize them based on their type, level of malignancy, 
and grade. This categorization is pivotal in guiding the 
treatment approach and understanding the prognosis 
associated with each tumor type.

The skull’s rigidity means that any growth within this 
confined space can trigger a cascade of issues. Even 
benign tumors, while not cancerous, can exert substan-
tial pressure on the brain as they grow. Their expansion 
within the limited confines of the skull can lead to a 
rise in intracranial pressure, which, in turn, might cause 
symptoms ranging from persistent headaches to nausea, 
vomiting, seizures, and even neurological deficits.

Malignant tumors, on the other hand, present a graver 
concern. Their aggressive nature, characterized by rapid 
growth and invasive tendencies, exacerbates the chal-
lenges posed by limited intracranial space. As these 
tumors progress, they infiltrate and displace healthy brain 
tissue, amplifying the elevation of intracranial pressure. 
This situation can quickly escalate, causing severe neu-
rological impairment or life-threatening consequences if 
not managed promptly and effectively.

The WHO classification system for brain tumors is a 
vital tool in understanding the diverse landscape of these 
conditions. It categorizes tumors into several types based 
on their cellular origin, characteristics, and behavior. 
Moreover, it differentiates between grades, reflecting the 
level of malignancy and the tumor’s aggressiveness.

For instance, gliomas, a type of tumor originating 
from glial cells, encompass a spectrum ranging from 
low-grade (such as astrocytoma’s and oligodendroglio-
mas) to high-grade tumors like glioblastoma multiforme 
(GBM), known for their aggressive behavior. Meningio-
mas, arising from the meninges, are typically categorized 
as benign tumors, but depending on their location and 
growth pattern, they too can exert pressure on the brain 
and cause significant issues.

The WHO grading system further stratifies tumors 
based on their histopathological features, aiding clini-
cians in determining the prognosis and guiding treat-
ment decisions. Grade I and II tumors are considered 
low-grade, often growing slowly, and possessing more 
defined borders, while Grade III and IV tumors represent 
high-grade malignancies, exhibiting rapid growth and 
infiltrative tendencies.

Magnetic Resonance Imaging (MRI) stands as a cor-
nerstone in diagnosing brain tumors due to its ability to 
offer highly detailed images of the brain’s anatomy. How-
ever, interpreting these images accurately to diagnose 
and classify brain tumors poses a complex challenge. Tra-
ditionally, this task has relied on the expertise of radiolo-
gists, yet this manual interpretation is time-consuming, 
subjective, and susceptible to human error, especially 
in intricate cases or when managed by less experienced 
personnel.

The emergence of machine learning, particularly deep 
learning techniques, has revolutionized medical image 
analysis, presenting novel prospects for brain tumor 
diagnosis. Convolutional Neural Networks (CNNs), a 
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type of deep learning algorithm, have exhibited remark-
able potential in precisely categorizing images, including 
those from medical imaging. Their adeptness in learning 
intricate patterns and features from vast datasets renders 
them suitable for tasks like brain tumor classification. 
The types of Brain Tumors are discussed in Table 1.

The contemporary methodologies for brain tumor clas-
sification harness deep learning by training CNN mod-
els on extensive datasets comprising MRI images. These 
models are trained to discern and identify patterns and 
features associated with several types of brain tumors. 
Despite notable advancements, challenges persist in 
terms of data privacy, model generalization, and the 
demand for substantial, annotated datasets.

MRI’s unparalleled ability to produce high-resolution 
images of the brain enables detailed visualization of 
tumors, providing crucial information for diagnosis and 
treatment planning. However, the process of analyz-
ing these images manually relies heavily on radiologists’ 
expertise, leading to subjectivity and potential errors. 
Moreover, interpreting complex MRI images to differen-
tiate between various tumor types demands a profound 

understanding of subtle nuances that might not always be 
evident to the human eye.

The integration of deep learning techniques, especially 
CNNs, has shown immense promise in revolutionizing 
the interpretation of MRI images for brain tumor diag-
nosis. These algorithms can autonomously learn intricate 
patterns and features within images, potentially augment-
ing the accuracy and efficiency of tumor classification.

CNNs function by utilizing multiple layers to detect 
hierarchical patterns within images. They learn from 
large volumes of labeled data, gradually enhancing their 
ability to recognize specific features associated with 
diverse types of brain tumors. This learning process 
involves the extraction of features at various levels of 
abstraction, enabling the network to discern subtle varia-
tions indicative of distinct tumor characteristics.

Despite the considerable progress made with CNNs, 
challenges persist within this domain. Data privacy 
remains a concern due to the sensitive nature of medi-
cal imaging data. Annotated datasets, crucial for training 
deep learning models, are often limited in size and acces-
sibility due to privacy regulations and the labor-intensive 
nature of labeling medical images.

Furthermore, ensuring the generalizability of these 
models beyond the datasets they were trained on remains 
a significant challenge. Models trained on specific data-
sets might encounter difficulties when applied to new, 
unseen data or when faced with variations in imaging 
techniques or equipment.

Efforts to address these challenges include the develop-
ment of privacy-preserving techniques that enable model 
training without compromising patient data confidential-
ity. Transfer learning, a method where pre-trained mod-
els are fine-tuned with smaller datasets, offers a potential 
solution for mitigating the need for vast amounts of 
annotated data. Additionally, collaborations between 
healthcare institutions for data sharing and the creation 
of standardized datasets could facilitate model training 
and validation across diverse populations [1]. 

The integration of deep learning in brain tumor clas-
sification using MRI images signifies a promising avenue 
in improving diagnostic accuracy and efficiency. As tech-
nology advances and methodologies evolve, the synergy 
between machine learning and medical imaging is poised 
to enhance our ability to detect, classify, and manage 
brain tumors, potentially transforming patient care and 
outcomes. However, addressing challenges related to data 
privacy, model generalization, and dataset availability will 
be crucial in realizing the full potential of these advance-
ments in clinical practice [2]. 

To address these challenges, we propose a novel feder-
ated learning-based deep learning model for automated 
and accurate brain tumor classification. This innova-
tive approach not only emphasizes the use of a modified 

Table 1 Types of brain tumors
Tumor Type Origin Grade/Severity Symptoms
Gliomas
(arising from glial cells)

Brain 
tissue

Varies (I-IV) Headaches, 
seizures, vision 
problems, weak-
ness, personality 
changes

Meningioma Mem-
branes 
sur-
round-
ing the 
brain

Usually, benign Headaches, 
seizures, vision 
problems, 
numbness, 
weakness

Schwannoma Nerve 
cells

Usually, benign Hearing loss, tin-
nitus, dizziness, 
facial weakness

Pituitary Adenoma Pituitary 
gland

Varies (benign, 
aggressive)

Vision problems, 
headaches, 
fatigue, exces-
sive thirst, milk 
production 
(galactorrhea)

Medulloblastoma Embry-
onic 
cells

Malignant Headaches, nau-
sea, vomiting, 
balance prob-
lems, difficulty 
walking

Craniopharyngioma Near 
the 
pituitary 
gland

Usually, benign Vision problems, 
headaches, fa-
tigue, hormonal 
imbalances

Metastatic Brain 
Tumors

Spread 
from 
other 
cancers

Any grade Varies depend-
ing on primary 
cancer
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VGG16 architecture optimized for brain MRI images but 
also highlights the significance of federated learning and 
transfer learning in the medical imaging domain. Feder-
ated learning enables decentralized model training across 
multiple clients without compromising data privacy, 
addressing the critical need for confidentiality in medi-
cal data handling. Additionally, transfer learning lever-
ages a pre-trained CNN, enhancing the model’s ability to 
classify brain tumors accurately by leveraging knowledge 
gained from vast and diverse datasets.The Contribution 
of the Research Paper are:

  • The primary objective of this research is to develop 
and validate a federated learning-based CNN model 
for the classification of brain tumors from MRI 
images.

  • This model aims to enhance classification accuracy 
while addressing data privacy concerns, a significant 
step forward in medical imaging and diagnostics.

The subsequent sections of the research paper encom-
pass vital facets crucial for a comprehensive study. The 
“Related Work” segment intricately surveys existing 
technologies, offering a detailed overview of prevailing 
methodologies. Following this, the “Materials and Meth-
ods” section elaborates on the dataset used, the CNN 
model architecture, and the innovative federated learn-
ing approach. The “Results” segment showcases empirical 
findings, spotlighting the model’s performance via met-
rics like accuracy, precision, recall, and F1-scores. Sub-
sequently, the “Discussion” section conducts a thorough 
analysis, comparing outcomes with established methods, 
exploring implications, and addressing study limitations. 
The “Conclusion” succinctly summarizes key findings’ 
potential impacts on medical diagnostics and delineates 
avenues for future research. Lastly, the “References” com-
pile all referenced scientific literature and data sources, 
ensuring academic integrity, and acknowledging schol-
arly contributions.

Related work
The field of medical imaging, particularly the classifica-
tion and diagnosis of brain tumors using MRI images, 
has seen significant advancements with the integration 
of machine learning and deep learning techniques. This 
section reviews related work in this domain, highlighting 
key methodologies, findings, and how they relate to our 
current research.

  • Traditional Image Analysis Techniques: 
While pioneering, traditional image processing 
techniques such as edge detection and region-based 
segmentation have been limited by their reliance on 
manual intervention and the potential for subjective 

interpretations. These methods laid the groundwork 
for automated analysis but often fell short in 
handling the complex and varied morphology of 
brain tumors, necessitating the development of more 
sophisticated, automated systems.

  • Machine Learning Approaches: The advent 
of machine learning brought about a significant 
improvement in automated classification with 
algorithms like Support Vector Machines (SVM) 
and Random Forests. However, these approaches 
required extensive feature engineering to capture the 
nuances of tumor morphology, a process that is both 
labor-intensive and potentially limiting in capturing 
the full complexity of the data. Moreover, classical 
machine learning methods sometimes struggled to 
manage the high-dimensional nature of MRI data 
effectively [3]. 

  • Deep Learning Developments: Deep learning 
models diagnose by analyzing patterns in vast 
datasets during training, where they adjust 
internal parameters through iterative processes 
to minimize errors between predicted and actual 
diagnoses. Once trained, these models apply learned 
patterns to new data to make diagnoses. However, 
understanding the precise reasoning behind each 
diagnosis can be challenging as deep learning models 
often operate as “black boxes,” lacking transparent 
decision-making processes. Despite their impressive 
accuracy, efforts to enhance interpretability, such 
as attention mechanisms and saliency maps, aim to 
shed light on the features or patterns influencing 
the models’ diagnoses, thereby improving trust and 
understanding in their clinical applications [4].

  • Federated Learning in Medical Imaging: Federated 
learning emerges as a promising solution to some 
of these challenges, especially in addressing data 
privacy and scarcity. By enabling models to be 
trained across multiple decentralized datasets, 
federated learning circumvents the need for data 
centralization, thus preserving privacy. However, 
one critical challenge in federated learning is the 
potential introduction of communication overhead 
between devices, which can impact its efficiency [5, 
6]. 

  • Multi-Task Learning and Transfer Learning: 
Some studies have explored multi-task learning 
and transfer learning to improve the efficiency and 
generalizability of models. These models, while 
delivering impressive performance, often lack 
transparency in their decision-making process, 
making it challenging for clinicians and researchers 
to understand how they arrive at diagnoses [7, 8].
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Our research builds upon and extends these develop-
ments by proposing a federated learning-based deep 
learning model, utilizing a modified VGG16 architecture 
for the classification of brain tumors from MRI images. 
This approach not only addresses the limitations associ-
ated with traditional techniques, machine learning, and 
deep learning methods but also leverages the strengths 
of federated learning to offer a novel solution that priori-
tizes precision, efficiency, and data privacy. By compar-
ing with the existing methodologies outlined in Table 2, 
our study contributes a unique perspective to the ongo-
ing dialogue in this rapidly evolving field, highlighting the 

potential of federated learning to overcome some of the 
most pressing challenges in healthcare applications.

By comparing with these related studies, our research 
contributes to the ongoing dialogue in this rapidly evolv-
ing field, offering a novel approach that balances the need 
for precision, efficiency, and data security in healthcare 
applications.

Methodology
This research employs an advanced machine learning 
approach, combining Convolutional Neural Networks 
(CNNs) with a federated learning framework, to classify 
brain tumors using Magnetic Resonance Imaging (MRI) 
data. The methodology encompasses several key com-
ponents: dataset preparation, model architecture design, 
federated learning implementation, training procedures, 
and evaluation metrics. The architecture of the proposed 
model has been given in Fig. 1.

A. Dataset description and preparation
The research utilizes a comprehensive dataset compris-
ing 7023 MRI images of the human brain, classified into 
four categories: glioma, meningioma, no tumor, and 
pituitary. This dataset is an amalgamation of data from 
three sources: figshare, the SARTAJ dataset, and Br35H. 
The images labeled as ‘no tumor’ were sourced from the 
Br35H dataset. Given concerns about the accuracy of 
glioma classification in the SARTAJ dataset, these images 
were replaced with those from figshare to ensure the 
integrity of the dataset. Table 3 shows the dataset descrip-
tion while Fig. 2 represents the dataset distribution.

Table 2 Existing methodologies
Study Accuracy Summary
Pedada, Kameswara Rao, 
et al. [9]

93.40% and 
92.20%

Use of U-Net Model for 
the segmentation on Brats 
2017 and 2018 dataset.

Saeedi, Soheila, et al. [10] 96.47% 2D CNN employed with 
ensemble techniques of 
machine learning.

Mahmud, Md Ishtyaq, 
Muntasir Mamun, and 
Ahmed Abdelgawad. [11]

93.3% Redefined CNN 
Model with modified 
classification.

Wang, Nathan, et al. [12] 94.90% Deep CNN on OCT 
Images.

Prakash, R. Meena, et al. [13] 97.39% Hyperparameter tuning of 
dense net.

Senan, Ebrahim Moham-
med, et al. [14]

95.10% Alexnet + SVM

Haq, Amin ul, et al. [15] 97.40% CNN with Transfer 
Learning

Rasool, Mohammed, et 
al. [16]

98.1% GoogleNet along with 
SVM as classifier

Khan, Abdul Hannan, et 
al. [17]

94.84% Hierarchical Deep Learn-
ing-Based Brain Tumor 
(HDL2BT) classification

Gaur, Loveleen, et al. [18] 94.64% CNN with Gaussian Noise
Vidyarthi, Ankit, et al. [19] 95.86% CNN with NN Classifier
Lamrani, Driss, et al. [20] 96% CNN with Enhanced 

Classifiers

Table 3 Dataset description
Type Training Testing
Glioma 1321 300
Meningioma 1339 306
No Tumor 1595 405
Pituitary 1457 300

Fig. 1 Proposed model
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Each image in the dataset underwent a series of pre-
processing steps. This included augmenting the images to 
improve the model’s ability to generalize and learn from a 
more diverse range of data representations. The augmen-
tation techniques included adjusting brightness and con-
trast levels randomly within specified ranges. The images 
were then resized to a uniform size of 128 × 128 pixels to 
ensure consistency in input data for the model which can 
be seen in Fig. 3.

Image preprocessing techniques
Augmentation In a bid to counteract overfitting and bol-
ster the model’s capacity to generalize beyond the training 
set, augmentation techniques were employed. These tech-
niques introduced random modifications to the images’ 
brightness and contrast, mimicking the variability often 
encountered in real-world medical imaging scenarios. By 

infusing diversity into the dataset through augmentation, 
the model is better equipped to adapt to varying image 
characteristics during training, potentially enhancing its 
ability to make accurate predictions on unseen data. In 
Fig. 4 images after augmentation can be seen.

  • Normalization: Following augmentation, a critical 
preprocessing step involved normalizing the 
images’ pixel values. This normalization procedure 
standardized the pixel intensity values, scaling them 
between 0 and 1. Such normalization is imperative 
for optimizing CNN model training. It aids in 
stabilizing and accelerating the training process by 
ensuring consistent data ranges across the entire 
dataset, thereby preventing certain features from 
disproportionately influencing the learning process.

Fig. 3 Sample images from the dataset

 

Fig. 2 Dataset distribution
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  • Resizing: Consistency in input dimensions is 
pivotal for Convolutional Neural Networks 
(CNNs) to effectively process images. Hence, all 
images underwent resizing to adhere to a uniform 
dimension of 128 × 128 pixels. This standardization 
ensures that the model receives inputs of a consistent 
size, facilitating uniform processing and enabling 
CNN to extract relevant features from the images 
consistently.

The preprocessing steps undertaken in this study—aug-
mentation, normalization, and resizing—significantly 
contribute to enhancing the dataset’s quality and prepar-
ing the images for efficient utilization within the CNN 
model. Augmentation broadens the dataset’s variabil-
ity, normalization standardizes pixel values for effec-
tive model training, and resizing ensures uniform input 
dimensions, collectively aiding in building a robust and 
reliable model for brain tumor classification.

Moreover, the strategic curation and refinement of the 
glioma class within the dataset underscore the study’s 
commitment to data quality and diversity, crucial fac-
tors influencing the CNN model’s performance and 
its potential applicability in real-world scenarios. This 
comprehensive dataset, augmented and preprocessed to 
optimize its utility for model training, lays a solid founda-
tion for the subsequent phases of the study, enabling the 
development of an accurate and adaptable brain tumor 
classification model.

B. Convolutional neural network (CNN) model architecture
The core of our methodology is the implementation of 
a Convolutional Neural Network (CNN) which can be 
seen in Eq.  1, specifically leveraging the VGG16 model 
architecture. The VGG16 model, a product of the Visual 
Graphics Group (VGG) at the University of Oxford, has 
garnered acclaim for its prowess in image recognition 
tasks. Its architecture comprises a sequence of convo-
lutional layers, interspersed with max-pooling layers, 

culminating in a series of fully connected layers. Trained 
on the ImageNet dataset, it gained popularity due to 
its ability to discern intricate features within images, 
making it an ideal choice for various computer vision 
applications.

 Output = ReLU (Convolution (Input,Filters) + Bias) (1)

Adaptation for brain tumor classification: In this 
research, the VGG16 model which can be observed in 
Eq. 2 was adapted to cater specifically to the task of brain 
tumor classification. The original top layers, responsible 
for ImageNet’s classification into a thousand categories, 
were excised to tailor the architecture to the four distinct 
categories pertinent to brain tumors: glioma, meningi-
oma, no tumor, and pituitary.

 Output = ReLU (Conv (X,W ) + b)  (2)

C. Model architecture
In preparing MRI images for compatibility with the 
VGG16 model, we implemented a series of preprocess-
ing steps designed to optimize input data quality and 
consistency. This included resizing images to 224 × 224 
pixels, the standard input size for VGG16, and applying 
a normalization process to scale pixel values to a range 
that matches the original VGG16 training data. To adapt 
the VGG16 architecture for the specialized task of brain 
tumor classification from MRI images, we introduced 
modifications that included fine-tuning the filter sizes in 
convolutional layers to better capture the nuances of MRI 
textures and adding additional dropout layers to prevent 
overfitting. Furthermore, our transfer learning strategy 
involved the utilization of pre-trained weights from the 
ImageNet dataset, leveraging the model’s existing feature 
extraction capabilities. This approach was complemented 
by fine-tuning the top layers of the model to align with 
our specific classification task, allowing the network to 

Fig. 4 Images after augmentation
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adjust to the distinct characteristics of brain tumors. The 
output layer of the model was reconfigured to support 
multi-class classification, replacing the original 1000-
class output with a new layer designed to distinguish 
between four tumor categories: glioma, meningioma, no 
tumor, and pituitary. This layer employs a SoftMax acti-
vation function to output probabilities across these four 
categories, ensuring the model’s predictions align with 
the classification requirements of our study. Together, 
these tailored preprocessing steps, architectural modi-
fications, and strategic application of transfer learning 
empower our CNN model to effectively classify brain 
tumors from MRI images with enhanced accuracy and 
generalizability.

  • Input Layer: The model commences with an input 
layer designed to accept images of 128 × 128 pixels, 
embracing three color channels (Red, Green, Blue - 
RGB). This layer serves as the gateway for the images 
to traverse through the network.

  • Base Model: The cornerstone of the architecture is 
the incorporation of the pre-trained VGG16 base 
model, shorn of its original top layers. Retaining 
the base layers while discarding the classification 
head allows the model to retain its proficiency in 
extracting intricate features from images while 
enabling its adaptation to the specific task at hand 
- brain tumor classification. These base layers come 
equipped with weights learned from the vast and 
diverse ImageNet dataset, serving as a valuable 
foundation for discerning pertinent features in our 
dataset.

  • Flattening Layer: Following the convolutional 
layers, a flattening layer is introduced. This layer 
transforms the two-dimensional output from the 
last convolutional layer into a one-dimensional 
array, preparing the data for processing through 
subsequent fully connected layers.

  • Dense Layers: The architecture incorporates 
several dense layers, often termed as fully connected 
layers, leveraging Rectified Linear Unit (ReLU) 
activation functions. These layers are pivotal 
in capturing and comprehending the intricate, 
non-linear relationships embedded within the 
data. By sequentially connecting these densely 
connected layers, the model can learn hierarchical 
representations of the input data, crucial for 
discerning complex patterns associated with brain 
tumor classification.

  • Dropout Layers: To combat overfitting, a common 
concern in neural network models, dropout layers 
have been strategically incorporated. During the 
training phase, these layers randomly deactivate a 
fraction of input units, mitigating the reliance on 

specific neurons and preventing the network from 
overfitting to the training data. This regularization 
technique promotes the model’s ability to generalize 
well to unseen data.

  • Output Layer: The architecture culminates in an 
output layer comprising a dense layer with a SoftMax 
activation function. This final layer is responsible for 
the classification task, assigning probabilities to each 
class (glioma, meningioma, no tumor, pituitary). The 
SoftMax function normalizes these probabilities, 
ensuring they sum up to one, thereby facilitating 
the categorization of the input image into one of the 
four distinct tumor categories based on the highest 
probability.

  • Fine-Tuning and Training: The base layers of the 
VGG16 model were fine-tuned on our specific 
dataset. By making these layers trainable, the 
model could adapt and learn more relevant features 
related to brain tumor classification. This process 
involves updating the weights of these layers during 
the training phase, thereby tailoring the network’s 
representations to the intricacies and complexities 
inherent in our dataset.

The architecture of the CNN model, employing the mod-
ified VGG16 framework, embodies a structured hierar-
chy of layers meticulously designed for the intricate task 
of brain tumor classification. Leveraging the strengths of 
the VGG16 base model while customizing it to the spe-
cific requirements of our dataset, this architecture serves 
as a robust foundation for the subsequent phases of 
model training and evaluation, aiming to accurately clas-
sify brain tumors into distinct categories for enhanced 
clinical diagnosis and prognosis.

D. Federated learning implementation
To address data privacy concerns and improve model 
robustness, we adopted a federated learning approach. In 
this approach, the model training is decentralized, with 
multiple clients (in this case, 10) training models on their 
subsets of data. This method ensures that sensitive medi-
cal data does not leave its original location, preserving 
patient privacy.

The federated learning process involved the following 
steps:

  • Client Selection: The federated learning process 
initiates by randomly selecting a subset of clients for 
model training at each iteration or training round. In 
this scenario, approximately 50% of the total clients, 
totaling ten clients, were chosen for participation in 
each training round.

  • Local Training: Upon selection, each client involved 
in the federated learning process receives a copy of 
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the global model. This global model serves as the 
initial framework derived from the modified VGG16 
architecture. Each client then proceeds to train this 
model locally on their respective datasets.

  • The decentralized nature of federated learning 
allows each client to leverage their local dataset 
without transmitting any raw or identifiable patient 
data outside their environment. This local training 
process occurs autonomously at each client’s end, 
enabling them to iteratively update the model based 
on the unique characteristics and nuances within 
their dataset.

  • Model Aggregation: Following the local training 
phase, the models from each client are aggregated to 
update the global model. This aggregation involves 
averaging the weights of the models obtained from 
the various clients. By amalgamating the locally 
trained models through weight averaging, the global 
model is iteratively refined and enhanced.

Federated learning offers a robust and privacy-preserving 
paradigm for advancing brain tumor classification mod-
els. By distributing model training across multiple cli-
ents while maintaining data localization, this approach 
addresses data privacy concerns and augments model 
robustness through diverse datasets. The iterative refine-
ment of the global model via model aggregation inte-
grates insights from varied clinical contexts, paving the 
way for more accurate and adaptable brain tumor classi-
fication models with heightened privacy safeguards. The 
several steps that an image goes through during the clas-
sification can be observed in Fig. 5.

E. Training and evaluation
The training process involved feeding the CNN model 
with batches of images, with a specified batch size and 
number of epochs. The model’s performance was evalu-
ated using standard metrics, including accuracy, preci-
sion, recall, and F1-score.

In addressing the intricacies of federated learn-
ing within our brain tumor classification model, we 

acknowledge the inherent challenge of increased com-
munication overhead that this distributed training 
approach entails. Federated learning necessitates fre-
quent exchanges of model updates between the client and 
the central server, which can significantly strain network 
resources. To mitigate this overhead, we have employed 
strategies such as model compression techniques and 
sparsification, which reduce the size of the model updates 
being transmitted without compromising the integrity of 
the training process. A separate set of images, not used 
during the training phase, constituted the test dataset. 
This dataset was critical for assessing the model’s ability 
to generalize and accurately classify unseen data.

Training batches

  • Image Processing and Augmentation: The 
training process begins with data processing and 
augmentation. The dataset is loaded and shuffled 
to ensure randomness, crucial for robust model 
training. Augmentation techniques, such as 
brightness and contrast adjustments, are applied to 
diversify the dataset and mitigate overfitting. Images 
are preprocessed to ensure uniformity in size and 
pixel values, enhancing the model’s ability to learn 
from various samples.

  • Batch Processing for Efficient Learning: The model 
receives data in batches, a practice vital for efficient 
training. This strategy aids in managing memory 
resources and facilitates parallel processing, enabling 
the model to learn iteratively in manageable chunks 
rather than processing the entire dataset at once. The 
code segments demonstrate the creation of a data 
generator function that yields batches of images and 
labels, allowing the model to learn from a subset of 
data in each iteration. In Fig. 6 the training loss can 
be observed.

  • Validation set: A crucial step in model development 
is the validation phase, where a subset of the dataset 
is reserved exclusively for validation purposes. This 

Fig. 5 Different steps of image processing
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set acts as unseen data for the model, enabling 
the assessment of its generalization capabilities. 
Validation occurs iteratively during model training 
to monitor its performance on data it has not been 
trained on, safeguarding against overfitting, and 
ensuring the model’s ability to generalize to new, 
unseen samples.

Hyperparameter tuning:

  • Optimization for Enhanced Performance: 
The success of the model hinges on optimal 
hyperparameter configuration. Hyperparameters, 
such as learning rate and dropout rates, significantly 
influence the model’s learning process. Tweaking 
these parameters is critical for achieving superior 
performance and preventing issues like underfitting 
or overfitting. The code illustrates setting these 
hyperparameters and their values for fine-tuning.

  • Iterative Optimization: Hyperparameter tuning is an 
iterative process aimed at finding the most suitable 
values that optimize the model’s learning without 
compromising its ability to generalize. This iterative 
approach involves adjusting hyperparameters, 
training the model, evaluating its performance on the 

validation set, and iteratively refining the parameters 
to achieve the best possible model performance [17]. 

Results and discussions
When assessing the effectiveness of a brain tumor classi-
fication model, a range of evaluation metrics is employed 
to gain comprehensive insights into its performance. 
These metrics serve as pivotal benchmarks to gauge the 
model’s accuracy, its ability to correctly identify different 
tumor types, and its overall efficacy in handling the clas-
sification task.

  • Accuracy: Accuracy, which is calculated in Eq. 3, 
in the context of model evaluation, quantifies the 
proportion of correctly classified images out of 
the total number of images. While it offers a quick 
glimpse into the model’s overall performance, 
accuracy might not provide a complete picture, 
especially when dealing with imbalanced datasets. 
For instance, if one class dominates the dataset, 
the model might achieve high accuracy by simply 
predicting the majority class most of the time, 
neglecting the classification of minority classes [18]. 

Fig. 6 Training loss
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1. TP = True Positives.
2. TN = True Negatives.
3. FP = False Positives.
4. FN = False Negatives.

 
Accuracy =

TP + TN

TP + TN + FP + FN
 (3)

  • Precision: Precision that is calculated in Eq. 4 delves 
deeper into the model’s performance by assessing 
the correctness of positive predictions. Specifically, 
it measures the ratio of correctly predicted positive 
instances (true positives) to the total number of 
instances predicted as positive (true positives + false 
positives). In the context of brain tumor 
classification, precision signifies how accurately the 
model identifies a specific tumor type when it makes 
a positive prediction for that class.

 
Precision =

TP

TP + FP
 (4)

  • Recall: Recall that is calculated using Eq. 5, also 
known as sensitivity or true positive rate, signifies 
the model’s ability to correctly identify all instances 
of a particular class among all the instances that 
belong to that class. It quantifies the ratio of correctly 
predicted positive instances (true positives) to 
the total number of actual positive instances (true 
positives + false negatives). In the context of brain 
tumor classification, recall emphasizes the model’s 
capability to detect and not miss instances of a 
particular tumor type.

 
Recall =

TP

TP + FN
 (5)

  • F1-Score: The F1-score that is calculated using Eq. 6 
offers a harmonized measure that balances both 
precision and recall. It represents the harmonic 
means of precision and recall, providing a single 
metric to evaluate the model’s performance 
considering both false positives and false negatives. 
This metric is particularly useful when there is 

an imbalance between the classes or when both 
precision and recall are crucial for the classification 
task. In brain tumor classification, where each tumor 
type’s identification is vital, the F1-score becomes a 
critical metric to assess overall performance.

 
F1_score = 2× Precision× Recall

Precision+ Recall
 (6)

In brain tumor classification, these metrics play a piv-
otal role in understanding the model’s ability to discern 
between different tumor types. For instance, precision 
would reveal how accurately the model identifies a spe-
cific tumor type among all the instances it classified as 
that type. Meanwhile, recall would emphasize how well 
the model detects all instances of a particular tumor type 
among the total instances of that type in the dataset.

In the next section, we will present and discuss the 
results obtained from this methodology.

The results obtained from the federated learning-based 
CNN model demonstrate its exceptional capability in 
accurately classifying brain tumors from MRI images. 
The model’s performance was assessed through various 
metrics including precision, recall, F1-score, and overall 
accuracy, supported by a detailed analysis using a confu-
sion matrix.

A. Model performance
The performance of the federated learning-based CNN 
model was rigorously evaluated using a comprehensive 
classification report, accuracy scores, and a confusion 
matrix. The following are the key findings:

  • Classification Report: The model achieved 
remarkable precision, recall, and F1-scores across 
all four tumor classes. The results are given in the 
Table 4 followed by the Fig. 7:

  • Accuracy Scores: The model demonstrated an 
overall accuracy of 98%, indicating its effectiveness in 
correctly identifying the presence and type of brain 
tumors in MRI images.

  • Confusion Matrix: A confusion matrix was 
generated to provide a visual representation of 
the model’s performance [23–24]. The matrix 
highlighted the true positives, false positives, 
true negatives, and false negatives for each tumor 
category. The high number of true positives and 
true negatives, along with the small number of 
false positives and false negatives, underscored the 
model’s accuracy which can be observed in Fig. 8.

Table 4 Classification report
Tumor Precision Recall F1-score
Glioma 0.99 0.94 0.96
Meningioma 0.94 0.96 0.95
No tumor 1 1 1
Pituitary 0.97 0.99 0.98
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B. Analysis of results
The results from the model’s performance evaluation 
reveal several key insights:

  • High Precision and Recall: The model’s high 
precision indicates a low rate of false positives, which 
is crucial in medical diagnostics to avoid unnecessary 
treatments. Similarly, the high recall scores suggest a 

low rate of false negatives, ensuring that the presence 
of tumors is accurately identified.

  • Effectiveness in Classifying Tumor Types: The 
near-perfect F1-scores across all tumor types reflect 
the model’s exceptional ability to differentiate 
between glioma, meningioma, no tumor, and 
pituitary cases. This is particularly significant 
given the challenges associated with distinguishing 

Fig. 8 Confusion matrix

 

Fig. 7 Classification report
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between these tumor types using traditional 
methods.

  • Generalization Capability: The high overall 
accuracy score demonstrates the model’s capability 
to generalize well across the diverse dataset. This 
suggests that the model can be reliably used in 
different clinical settings and with varying MRI 
image qualities.

  • Federated Learning Impact: The implementation 
of federated learning contributed to the model’s 
robustness and accuracy. By training across multiple 
decentralized datasets, the model benefited from 
a wider variety of data, enhancing its ability to 
generalize and perform accurately on unseen data.

In conclusion, the proposed federated learning-based 
CNN model has proven highly effective in the classifica-
tion of brain tumors using MRI images. Its high accuracy, 
precision, and recall make it a promising tool for aiding 
medical professionals in the diagnosis and treatment 
planning of brain tumors. The following section will dis-
cuss these results in the context of existing methodolo-
gies and explore their implications in the field of medical 
imaging.

C. Comparison with existing methods
The federated learning-based CNN model marks a sig-
nificant advancement over traditional and existing deep 
learning methods in brain tumor classification. Tradi-
tional approaches, reliant on manual interpretation of 
MRI images, are time-consuming and subject to human 
error. Even with the integration of conventional machine 

learning techniques, these methods often lack the 
robustness and adaptability required for precise tumor 
classification.

In contrast, existing deep learning methods, while more 
accurate than manual interpretation, frequently encoun-
ter challenges related to data privacy, model generaliza-
tion, and dependency on large, well-annotated datasets. 
The proposed federated learning model addresses these 
concerns effectively. Its ability to achieve a high accuracy 
rate of 98%, with substantial precision and recall across 
all tumor types, sets it apart from previous deep learning 
approaches. Moreover, the decentralized nature of feder-
ated learning ensures data privacy and diversity, contrib-
uting to the model’s robust performance across various 
datasets. In the below table the comparison with the 
existing model is given in Table 5:

D. Challenges and limitations
Despite its successes, the study faces several challenges 
and limitations:

  • Data Biases and Diversity: The model’s 
performance is contingent on the diversity and 
quality of the data on which it is trained. Biases in the 
dataset, such as overrepresentation of certain tumor 
types or imaging styles, could potentially skew the 
model’s learning and prediction accuracy [25].

  • Federated Learning Complexities: While federated 
learning offers benefits in data privacy and diversity, 
it also introduces complexities in model training and 
aggregation. Ensuring consistent model performance 
across different clients with potentially non-IID 
(independently and identically distributed) data is a 
challenge.

  • Scalability and Computational Resources: The 
scalability of the federated learning approach and 
the computational resources required for training 
and aggregating models across multiple clients are 
significant considerations, especially in resource-
constrained setting [26].

The generalization of findings to diverse patient popu-
lations remains a limitation. The study’s results, while 
promising, require further validation in cohorts that 
encompass a wider range of demographic, geographic, 
and clinical characteristics. Such validation studies are 
essential to confirm the model’s applicability and effec-
tiveness across different settings and populations, ensur-
ing that the benefits of federated learning for brain tumor 
classification can be realized on a global scale.

E. Future directions
To further enhance the model’s efficacy and applicability, 
several future directions are suggested:

Table 5 Comparison with existing methodologies
Study Accuracy Technique
Pedada, Kameswara Rao, 
et al. [9]

93.40% and 
92.20%

Use of U-Net Model for 
the segmentation on Brats 
2017 and 2018 dataset.

Saeedi, Soheila, et al. [10] 96.47% 2D CNN employed with 
ensemble techniques of 
machine learning.

Mahmud, Md Ishtyaq, 
Muntasir Mamun, and 
Ahmed Abdelgawad. [11]

93.3% Redefined CNN 
Model with modified 
classification.

Khan, Abdul Hannan, et 
al. [19]

94.84% Hierarchical Deep Learn-
ing-Based Brain Tumor 
(HDL2BT) classification

Gaur, Loveleen, et al. [20] 94.64% CNN with Gaussian Noise
Vidyarthi, Ankit, et al. [21] 95.86% CNN with NN Classifier
Lamrani, Driss, et al. [22] 96% CNN with Enhanced 

Classifiers
Islam, Moinul, et al. [23] 91.05% Federated Learning
Alshammari, Abdulaziz. 
[24]

93.74% VGG-16 with Integration 
of CNN

Proposed Model 98% VGG with Federated 
Learning
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  • Expanding Dataset Diversity: Testing the model 
on a more diverse set of MRI images, including 
those from different demographics and with varying 
imaging conditions, would improve its robustness 
and generalizability.

  • Cross-Institutional Collaboration: Implementing 
the model across multiple medical institutions would 
not only evaluate its scalability but also enrich the 
training data, potentially leading to improved model 
accuracy.

  • Broader Medical Imaging Applications: The 
success of this model in brain tumor classification 
opens avenues for applying similar federated 
learning-based deep learning approaches to other 
areas of medical imaging, such as detecting tumors 
in other organs or diagnosing different neurological 
disorders [27].

  • Model Optimization and Efficiency: Ongoing 
research to optimize the model’s computational 
efficiency and training time can make the approach 
more feasible for real-world medical settings [28].

In summary, while the federated learning-based CNN 
model presents a significant improvement in brain tumor 
classification from MRI images, ongoing research and 
development are essential to address its current limita-
tions and to explore its full potential in the broader con-
text of medical imaging.

Conclusion
This study has successfully developed and evaluated a 
federated learning-based Convolutional Neural Network 
model for the classification of brain tumors using MRI 
images. The main findings include the model’s remark-
able accuracy rate of 98%, along with high precision 
and recall across all tumor types: glioma, meningioma, 
no tumor, and pituitary. These results signify a notable 
improvement over traditional and existing deep learning 
methodologies, primarily due to the incorporation of fed-
erated learning, which enhances data privacy and model 
generalization. The study has effectively demonstrated 
the feasibility and efficacy of using advanced machine 
learning techniques in the critical domain of medical 
imaging.

The implications of this research are far-reaching and 
transformative for the field of medical diagnostics and 
patient care. The high accuracy and efficiency of the 
model in classifying brain tumors can significantly aid 
radiologists and oncologists in making more informed 
and quicker diagnostic decisions, potentially leading to 
earlier and more effective treatment plans. This advance-
ment is especially crucial in brain tumor cases, where 
early detection and accurate classification can markedly 
influence patient outcomes.

Moreover, the successful application of federated learn-
ing in this context opens new avenues for medical data 
analysis while respecting patient privacy and data secu-
rity concerns. The model’s approach can be extended to 
other types of medical imaging tasks, paving the way for 
broader applications in healthcare diagnostics. It also 
sets a precedent for future research to explore and refine 
machine learning models, making them more accessible 
and practical for clinical use.

In conclusion, this research contributes significantly 
to the intersection of artificial intelligence and health-
care, showcasing the potential of machine learning to 
revolutionize medical diagnostics and enhance patient 
care. However, we recognize the importance of further 
validation on larger and more diverse datasets to assess 
the generalizability and robustness of our approach in 
real-world clinical settings. Additionally, we advocate for 
exploring extensions of the federated learning framework 
in other medical imaging tasks beyond brain tumor clas-
sification, paving the way for advancements in privacy-
preserving AI-driven healthcare solutions. We believe 
that continued research in this direction will contribute 
significantly to improving the efficiency, accessibility, and 
effectiveness of medical imaging technologies, ultimately 
benefiting patient care and outcomes.
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